

Estimation of the True Arterial Input Function using a Physiological Model in Dynamic Contrast Enhanced MRI

Dennis Lai-Hong Cheong¹, Bo Zhang¹, Limiao Jiang^{1,2}, and Thian C Ng^{1,2}

¹Clinical Imaging Research Center, A*STAR & National University of Singapore, 117456, Singapore, ²Department of Diagnostic Radiology, National University of Singapore, 119074, Singapore

Target audience:

Researchers who use arterial input function (AIF) in the analysis of DCE or DSC MRI data.

Purpose:

Tracer kinetics analysis of DCE MRI data requires an arterial input function (AIF)¹, which is the contrast concentration time curve ($C(t)$) in incoming blood at a tissue region. However, direct measurement is not viable with current technologies^{2,3}. A common practice assumes $C(t)$ at a nearby artery ($C_{\text{art}}(t)$) has negligible differences from the true AIF ($C_{\text{AIF}}(t)$) other than the bolus arrival time⁴. Alternative approaches such as reference tissue technique² and simultaneously determination of both AIF and tracer kinetics parameters³ are more complex. We attempt to estimate $C_{\text{AIF}}(t)$ using a physiological model for AIF that was proposed recently⁵.

Theory:

This AIF model accounts for three sets of physiological factors on the AIF: the delay and dispersion of the injected tracer between the injection and measurement points, widening boluses of tracer passing through repeatedly, and the reducing tracer amount due to influx and efflux. This model suggests $C(t)$ in different blood vessels ($C_{\text{ves}}(t)$) in a scan can be modeled with different values for parameters (p_1) describing the first set of physiological factors, but the same set of values for the remaining parameters (p_2, p_3) that describe the other two sets of physiological factors. Thus, we could simultaneously fit different $C_{\text{ves}}(t)$ using different p_1 's and the same p_2 and p_3 . There are three parameters in p_1 : a scalar related to the area of the first pass (k), the time lag between contrast injection time and bolus arrival time (t_{lag} s), and a relative dispersion of the contrast bolus during the passage from injection point to the measurement point (RD_1). The two parameters in p_2 are the minimum time interval between subsequent circulations (t_{recirc} s) and their relative dispersion (RD_2). Lastly, p_3 consists of three rate constants K_{12} , K_{21} and K_{31} between vascular space, tissue space and renal excretion, respectively. We hypothesize that with appropriate estimation of these three parameters at the tissue of interest, this model can estimate the true AIF at the tissue of interest.

Method:

Five DCE MRI data sets of two Nasopharyngeal carcinoma patients from an IRB approved study were examined. MRI scans were performed on a 3T MR scanner (Magnetom Skyra; Siemens, Germany) with a head and neck coil. Axial 3D SPGR FLASH, T1 maps (TR=20ms, FA=5°, 13°, 20°, FOV 250 mm, 256x256, 16 4mm thickness slices) and subsequent dynamic acquisition (TR=4.5ms, FA=15°, 2.16s per frame for 220 frames). On the seventh dynamic time-point, 0.1mmol/kg of body weight dosage of 0.5M Gadolinium-based contrast agent (Dotarem, Guerbet, France) was administered through a power injector at 3ml/s.

From each patient, we obtained $C(t)$ from three locations: artery ($C_{\text{art}}(t)$), vein ($C_{\text{vein}}(t)$), and tumor region ($C_{\text{tum_ves}}(t)$) that has a steep fast rise, possibly from blood vessel within. We fitted these three curves individually, and both $C_{\text{art}}(t)$ and $C_{\text{vein}}(t)$ simultaneously as described above. We simulated $C_{\text{AIF}}(t)$ with different t_{lag} by assuming RD_1 changes linearly between $C_{\text{art}}(t)$ and $C_{\text{vein}}(t)$, and average contrast concentration during the last minute in $C_{\text{AIF}}(t)$ and $C_{\text{vein}}(t)$ are the same. We performed voxel level tracer kinetics analysis of the tumor using $C_{\text{art}}(t)$ and $C_{\text{AIF}}(t)$, where t_{lag} is set as based on $C_{\text{tum_ves}}(t)$, as the AIF, using a distributed parameter (DP) model⁴ and the extended generalized kinetic (eGK) model⁴.

Results:

The AIF model successfully fitted all $C(t)$ curves individually and both $C_{\text{art}}(t)$ and $C_{\text{vein}}(t)$ simultaneously (Fig 1(a)). Parameters in p_2 and p_3 from fitting $C_{\text{art}}(t)$ and $C_{\text{vein}}(t)$ separately and simultaneously were similar (Table 1), but not from the $C_{\text{tum_ves}}(t)$. $C_{\text{AIF}}(t)$ with different t_{lag} were simulated (Fig 1(c)). Using $C_{\text{AIF}}(t)$ instead of $C_{\text{art}}(t)$ achieved slightly lower fitting error, and affected both DP and eGK model parameters in a similar way except v_p , with larger changes in those parameters related to vascular space than K^{trans} and v_e that related more to the tail of AIF (Table 2). Bolus arrival time difference between $C_{\text{art}}(t)$ and $C_{\text{AIF}}(t)$, $\Delta t_{\text{lag}}=2.45$ s, was reflected in the DP fitting results ($\Delta t_0=2.66$ s) but not in eGK.

Discussions:

We have demonstrated a feasible way to estimate the true AIF at the tissue of interest when at least one $C_{\text{art}}(t)$ and $C_{\text{vein}}(t)$ can be obtained. This method does not need knowledge about reference tissue and is independent on the tracer kinetics model used. Similar p_2 and p_3 parameter values from fitting $C_{\text{art}}(t)$, $C_{\text{vein}}(t)$ and both simultaneously support the physiological prediction of the AIF model. Simulated $C_{\text{AIF}}(t)$ suggests that AIF changes quite significantly corresponding to arrival times. The different magnitude and direction of changes in parameters t_0 and v_p , when $C_{\text{AIF}}(t)$ was used, respectively, between the DP and eGK models might be reflecting the limitations of eGK in its assumption that the vascular concentration in tissue vascular space is a scaled down version of the AIF by v_p .

Conclusion:

This method offers a way to estimate the true AIF at the tissue of interest.

References:

1. Calamante F. Arterial input function in perfusion MRI: A comprehensive review. *Progress in Nuclear Magnetic Resonance Spectroscopy* 2013;74:1-32.
2. Schabel MC, Fluckiger JU and DiBella EVR. A model-constrained Monte Carlo method for blind arterial input function estimation in dynamic contrast-enhanced MRI: I. Simulations *Phys. Med. Biol.* 2010;55(16):4783-4806.
3. Fan X, Haney CR, Mustafi D, et al. Use of a Reference Tissue and Blood Vessel to Measure the Arterial Input Function in DCEMRI. *MRM*. 2010;64(6):1821-1826.
4. Koh TS, Bisdas S, Koh DM, et al. Fundamentals of Tracer Kinetics for Dynamic Contrast-Enhanced MRI. *JMRI* 2011;34(6):1262-1276.
5. Cheong DLH and Ng TC. A physiological model for injected contrast agent concentration incorporating recirculation, extravasation and excretion. *ISMRM*. 2013;3764 (e-Poster).

Acknowledgements:

This study was supported by grant WBS r-180-000-016-733. We would like to thank Dr. Boon Cher Goh from National University Health System Singapore for the DCE MRI data.

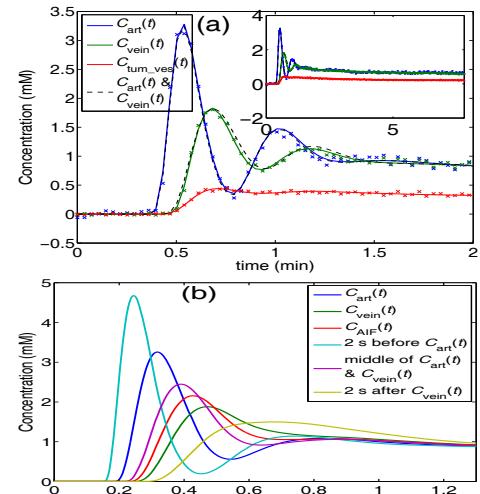


Fig. 1. Concentration time curves measured (crosses) in a representative case and fitting (solid lines) at different vessels, high vasculature tumor region, and simultaneous fitting of curves at artery and vein (black dashed line) (a). Simulated true AIFs at various t_{lag} (b).

Table 1. Model parameters of the representative case.

$C(t)$	p_1	p_2	p_3
$C_{\text{art}}(t)$	k	t_{lag}	RD_1
$C_{\text{art}}(t)$	0.018	9.65	0.249 14.8 0.243
$C_{\text{vein}}(t)$	0.015	14.3	0.251 11.8 0.280
$C_{\text{tum_ves}}(t)$	0.005	12.1	0.300 5.00 0.386
$C_{\text{art}}(t)$ & $C_{\text{vein}}(t)$	0.0178	9.79	0.244
$C_{\text{AIF}}(t)$	0.0168	13.3	0.273 14.8 0.242
$C_{\text{AIF}}(t)$	0.016	12.1	0.265

Table 2. Tracer kinetics analysis results of the tumor in the representative case.

Model	AIF	t_0	F	EF or K^{trans}	t_1	v_p	v_e	Fitting error
DP	$C_{\text{art}}(t)$	7.53±5.26	171±145	35.1±43.0	7.42±7.81	10.9±12.1	36.6±20.2	0.569±0.200
DP	$C_{\text{AIF}}(t)$	4.87±5.73	256±231	29.5±38.0	5.71±4.68	12.9±10.6	38.2±20.7	0.541±0.178
eGK	$C_{\text{art}}(t)$	9.11±4.89	NA	59.2±60.9	NA	18.1±21.7	62.2±28.9	0.649±0.301
eGK	$C_{\text{AIF}}(t)$	8.01±4.96	NA	58.8±63.3	NA	15.8±19.1	59.6±28.3	0.629±0.275

Abbreviation: difference between bolus arrival times of AIF and $C(t)$ (t_0 s), perfusion (F mL/100g/min), first pass extraction ratio (E), mean vascular transit time (t_1 s), fractional vascular volume (v_p %), fractional extravascular extracellular volume (v_e %).