The Transfer Constant K^{trans} in Glioblastomas is Limited by Permeability and not Perfusion

Atle Bjornerud^{1,2}, A. Gregory Sorensen^{3,4}, Patrick Y Wen⁵, Tracy T Batchelor^{6,7}, Rakesh K Jain⁶, and Kyrre E Emblem^{1,3}

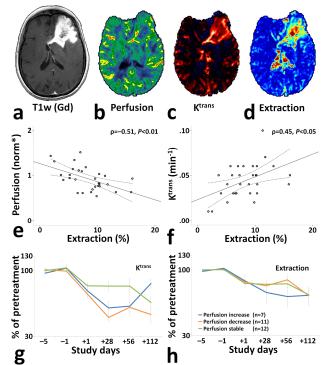
¹The Intervention Centre, Oslo University Hospital, Oslo, Norway, ²Dept of Physics, University of Oslo, Oslo, Norway, ³Department of Radiology and Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States, ⁴Siemens Healthcare Health Services, Pennsylvania, United States, ⁵Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School, Massachusetts, United States, ⁶Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Massachusetts, United States, ⁷Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Massachusetts, United States

TARGET AUDIENCE: Clinicians, physicists and researchers involved in DSC imaging studies and in the interpretation of DSC-derived brain tumor perfusion data.

PURPOSE: Tumor perfusion (CBF) and capillary permeability transfer constant (K^{trans}) have been proposed as sensitive biomarkers to monitor the effect of vascular-targeting and anti-angiogenic agents^{1,4}. However, these two metrics are not physiologically independent parameters which may complicate their interpretation in clinical data. Changes in K^{trans} may represent change in permeability surface area (PS) product, change in CBF or a combination of the two². Given the increasing interest of using these metrics as target biomarkers for clinical anti-angiogenic studies in patients with glioblastomas, any interaction between K^{trans} and CBF should be established.

METHODS: Both K^{trans} and CBF were estimated directly from the tissue residue function derived from dynamic contrast susceptibility (DSC) MRI, as previously described ³. From this, the initial voxel-wise contrast agent extraction fraction, $E=K^{trans}/CBF = 1-\exp(-PS/CBF)$ was estimated. The tumor value of E thus provides a direct estimate of the inter-dependence of K^{trans} and CBF because $K^{trans} \approx CBF$ when E->1 and $K^{trans} \approx PS$ when E->1. In this retrospective study, we included 30 patients with recurrent glioblastomas enrolled in a Phase

Il clinical trial of cediranib (clinicaltrials.gov, NCT00305656), an orally administered [45mg/kg/day] pan-VEGF receptor tyrosine kinase inhibitor⁵ Gadolinium-based (Gd) DSC MRI was performed at 3 T (Siemens Magnetom Trio) prior to therapy onset (days -5 and -1) and repeated at days +1, +28, +56 and +112, as previously reported⁴. Tumor regions-of-interests were outlined on the post-contrast axial T1-weighted images by an experienced neuroradiologist and co-registered to DSC space using Statistical Parametric Mapping (SPM8). Values of *E*, CBF and K^{trans} at baseline (averaged over days -5 and -1) were compared using Spearman correlation (ρ). The kinetic analysis was performed in nordicICE (NordicNeuroLab AS, Bergen, Norway).


RESULTS AND DISCUSSION: By visual inspection, values of E before cediranib therapy were regionally and spatially different from CBF and K^{trans} (Fig. 1a-d). The average (\pm SD) whole tumor E was 6% (\pm 3.5%). E was negatively correlated with tumor CBF (ρ = -0.51; P < 0.01; Fig. 1e) and positively correlated with tumor K^{trans} (ρ = 0.45; P < 0.05; Fig. 1f). There was no correlation between K^{trans} and CBF (ρ = 0.15), indicating that K^{trans} is not perfusion limited in glioblastomas.

During cediranib therapy, the temporal progression of whole tumor E was found to follow the same trend as for K^{trans} and with no difference between patients with different CBF trajectories (Fig. 1g-h). This observation confirms that E is dependent on the cediranib-induced decrease in vascular permeability regardless of perfusion.

CONCLUSION: We find the initial contrast agent extraction fraction in glioblastomas using conventional gadolinium chelates to be on average below 10% suggesting contrast agent extravasation is limited by permeability and not perfusion. K^{trans} and CBF derived from DSC MRI can be considered independent parameters in glioblastomas.

References

- [1] Batchelor et al. Cancer Cell 2007; 11(1):83-95
- [2] Tofts, et al. J Magn Res Imaging 1999; 10(3):223-32
- [3] Bjornerud et al. J Cereb Blood Flow Metab 2011; 31(10):2041-53
- [4] Sorensen et al. Cancer Res 2012; 72(2):402-7
- [5] Batchelor et al. J Clin Oncol. 2010; 10;28(17):2817-23.

Figure 1: Contrast-enhanced MRI (a), CBF (b), K^{trans} (c) and extraction fraction (d) of a therapy-naïve glioblastoma patient. Extraction fraction in tumor was negatively correlated with perfusion (e) and positively correlated with K^{trans} (f). Both K^{trans} (g) and extraction (h) were reduced following cediranib therapy regardless of perfusion status. (*perfusion values in tumor normalized to reference tissue).