
 
       Fig 1. Quantitative CBF map comparisons. 

 
Fig 2. Comparison of perfusion weighted images (above) 
and temporal SNR for 20 slice acquisitions. (tSNR in 4 

subjects). 

 
Fig 3. Comparison (left) image quality in 48 sec and 4 min scans. (right) 
temporal SNR: 3D GRASE w/ and w/o background suppression (BS), 
SMS-EPI Full Fourier (FF) TE=18ms and 6/8 partial (PF) TE=13ms. 
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Introduction  Multi-slice EPI is a commonly used readout sequence in ASL imaging. Simultaneous multi-slice (SMS) EPI having a multiband slice 
excitation factor (MB) could be used instead of EPI to increase slice coverage1,2,3 or reduce acquisition time window of ASL image readout. Here we 
developed and evaluated SMS-EPI pulsed ASL (PASL) for perfusion imaging of brain and compared it to EPI and segmented 3D GRASE. 
Methods  Experiments were performed in 4 normal volunteers, using a 3T scanner with 32 channel head coil. PASL preparations use FAIR and 
QUIPSS II with TI1/1000ms and TI2/1800ms.  Image parameters EPI and SMS-EPI: TR=3000ms, TE=12-18ms, 4x4 mm2 in-plane resolution, slice 

thickness=5mm and 1mm or 20% slice gap; matrix = 64 × 64, full and partial Fourier = 6/8, 
signal averages= 40, echo spacing = 0.41~0.46ms with ramp sampling, 90° sinc excitation pulse 
width = 2.56ms in MB-2 up to 6.71ms in MB-5 to reduce peak RF power. Blipped-CAIPI 
controlled aliasing FOV/2 - FOV/4 was used to reduce g-factor penalty3. In 4 subjects, 
qualitative comparison to 3D GRASE at same slice positions required 6mm contiguous slices to 
match position of SMS-EPI using 5mm slices skip 1mm gaps.  3D GRASE imaging parameters: 
TR=3000ms, TE=19ms, matrix 64x64x20, resolution 4x4x6mm3; partial-Fourier slice axis=6/8; 
2x2=4 segmentations on Ks and Kp phase encoded axes, post IR delay (TI) = 1800ms, QUIPPS 
II. Background suppression was used in 3D GRASE as earlier described4. To achieve SNR 
comparison of 3D GRASE and SMS-EPI ASL at the same slice thickness and positions, in 
isotropic 4mm resolution,  a 
100% slice gap was used in 
SMS-EPI to match every other 
slice position in 3D GRASE. 

Results and Discussion  Quantitative CBF maps, Fig.1, were calculated and 
compared between MB-1, MB-2 and MB-3, in a 12 slices data set. For the first 4 
slices, which have the same TI for each slice across sequences, the mean intraclass 
Correlation Coefficient (ICC) values were .73 for MB-1_MB-1, .62 for MB-1_MB-
2 and .61 for MB-1_MB-3. Spatial SNR for the perfusion weighted images 
averaged across subjects was 3.28 and 3.44 for initial two MB-1 acquisition, 3.25 
for MB-2 and 2.98 for MB-3. The relative temporal SNR was 1.0 for MB-1, 0.87 
for MB-2 and 0.78 for MB-3. Fig. 2 comparisons of 20 slice scan with SMS-EPI 
and EPI ASL used 40 averages (avg) in 4.5 min scan time and segmented 3D 
GRASE ASL used 2 avg in 48 sec scan time. With SMS-EPI the time window of 
image acquisition was reduced from 874ms for EPI (MB-1) to 436ms, 312ms, 
237ms, and 196ms in MB-2 through MB-5, respectively. The susceptibility artifacts 
and distortions were the same in SMS-EPI and EPI while greatly reduced in 3D 
GRASE due to rf refocusing in the spin echo CPMG sequence. Fig. 3 shows the 
comparison of 3D GRASE to SMS-EPI with 100% gap at same 4 mm isotropic 
resolution as GRASE but with a longer acquisition time or reduced SNR in SMS-
EPI. This difference was greatly effected by background suppression, not possible 
to implement in SMS-EPI as it did not have identical slice excitation time as does 
3D GRASE. In conclusion, PASL performed with SMS-EPI has major advantage 
over EPI based ASL with greater slice coverage and little penalty in SNR, however 
both have marked SNR disadvantage compared to 3D GRASE ASL. 
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