Myocardial Perfusion Imaging

Sebastian Kozerke, PhD

Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
Imaging Sciences and Biomedical Engineering, King’s College London, UK

Target audience

The lecture targets physicists, engineers and clinicians with an interest in myocardial perfusion imaging
methodology and its clinical application.

Preface

Following the proof-of-concept study of contrast-enhanced myocardial perfusion imaging in isolated hearts in 1990
(1) and in cardiac patients in 1991 (2) significant advances have been made. Clinical trials have proven the
diagnostic performance of the method in large patient cohorts (3,4) in comparison with invasive coronary
angiography and nuclear techniques. Besides application of exogenous contrast agents, endogenous contrast
mechanisms have been explored too. Arterial spin labeling in the heart was demonstrated in 1993 (5) and, with
further technical improvements, recent patient studies have demonstrated the clinical value of the method (6).
Nevertheless, the perfusion-induced contrast is small and hence spin labeling methods remain challenging.
Accordingly, and based on the clinical data available today, this plenary lecture will focus on the state-of-the-art of
contrast-enhanced myocardial perfusion imaging approaches.

Introduction

While spatial and temporal resolution, spatial coverage and robustness against motion and other artifacts are
parameters of general concern in every imaging experiment, contrast-enhanced perfusion imaging additionally
requires knowledge of the relationship between the signal and T, changes as induced by the contrast agent bolus:

1oL .
=T + I -[Gd] [1]

Here, T;, and I' denote baseline T; and relaxivity of the contrast agent, respectively. In principle, the T,
dependency of driven steady-states may be exploited to derive contrast agent concentration (7); however, the
transient phase to steady-state often renders the approach problematic. Accordingly, magnetization preparation
schemes either using inversion or saturation pre-pulses have been widely adopted (Figure 1).
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Figure 1. Perfusion sequence including pre-pulse (PP) and imaging module (IMA). The time between pre-pulse and k-space center
is denoted by TI.

Saturation may be achieved by using simple hard pulses or, if B;+ inhomogeneity is present, by composite or
adiabatic pre-pulses (8). The saturation recovery method is independent of heart rate variations and hence very
robust in patients. It is, however, readily seen that a linear relationship between image intensity p(X) and contrast
agent concentration is only obtained for very short delays TI between pre-pulse and imaging readout or for low
contrast agent concentrations:

p (%) o« My(1 — e~ TH/M() [2]
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i.e. for TI K T; for which e T ~ 1 — TI/T1. While a linear relationship between signal and contrast agent
concentration is desirable for quantitative perfusion analysis (9), the associated low agent concentration reduces
the contrast-to-noise ratio between non-ischemic and ischemic myocardium and hence may compromises
qualitative reading. With contrast agent concentrations of 0.05 to 0.1 mmol/kg, as used clinically, there is already
significant departure from linearity (10). In order to capture the non-linear signal/concentration relationship
dedicated modifications to the pulse sequence have been proposed. In the dual-bolus technique (11) a diluted pre-
bolus is imaged while the dual-sequence technique (12) interleaves a second sequence with reduced TI. From a
practical point of view of contrast agent administration the dual-sequence approach is preferred (Figure 2).
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Figure 2. Dual-sequence technique including module to image the arterial input function (AIF) with a short delay between pre-
pulse and k-space center followed by the standard perfusion imaging module.

Pulse sequences

On clinical systems multi-slice 2D perfusion protocols are most widely available. Three to four slices are imaged in
each cardiac cycle using either gradient-echo (GRE), gradient echo-planar (GRE-EPI) or balanced steady-state free
precession (bSSFP) pulse sequences (13) (Figure 3). A key disadvantage of the multi-slice 2D approach relates to
the limited coverage of the heart and the fact that different slices are acquired in different phases throughout the
cardiac cycle. To address the issue, 3D perfusion imaging in combination with scan acceleration has been
developed (14) providing whole-heart coverage in a single or even in multiple cardiac phases.
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Figure 3. Multi-slice 2D versus volumetric 3D perfusion imaging. While 2D imaging is feasible within the limited acquisition
window per cardiac cycle, 3D imaging approaches require data undersampling.

In general, cardiac motion demands very rapid data acquisition within a 50-250ms window per cardiac cycle. This
requirement inherently limits spatial resolution and coverage that can be obtained with Fourier encoding or
conventional parallel imaging techniques. For example, for a 100ms acquisition interval per cardiac cycle, a TR of
2.5ms, 75% partial Cartesian sampling and parallel imaging with 2-fold undersampling, the minimum in-plane
resolution is 3mm. At this resolution, sub-endocardial perfusion defects may already be difficult to discern.

Scan acceleration

With advances in spatiotemporal undersampling methods, undersampling factors beyond a factor of two are now
routinely obtained (15). The developments have triggered a range of developments including high-resolution 3D
perfusion imaging (16). Spatiotemporal or k-t undersampling may be considered independent of the actual k-space
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trajectory used by e.g. considering sampling pattern in angle and time space as in Radial imaging (Figure 4). As a
common feature of spatiotemporal undersampling methods, the inherent similarity of adjacent points in both
space and time is exploited.
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Figure 4. Temporal undersampling using k-t pattern in Cartesian and Radial sampling. Data may be collected using either
uniform steps in k-t space or using random steps as required for Compressed Sensing.

In order to briefly discuss implementations of scan acceleration, let us define MR encoding of the discretized set of
voxels g as:

d=T-FT-S-p+17 3]

with d stacking the measured k-space data for all receiver coils, I' denoting the undersampling operator, FT the
Fourier transform operator, coil sensitivities S and noise #. By introducing matrix E =T - FT-S image
reconstruction or MR decoding may be written as:

7 — argmin, (d — E -T)Hlp‘l(c? —EQ) [4]

where 1 refers to the noise covariance matrix as determined from noise measurements and i denotes the image
to be reconstructed. The inversion of [3] is ill-posed if undersampling is employed. Accordingly, an infinite number
of solutions exist and hence regularization is required to solve the problem:

7 - argmin; ||d — E - 7”2 + Alle~t-1I3 (5]

Here © contains prior information about the object which may include an estimate of the expected signal in the
spatiotemporal frequency (x-f) domain as in k-t SENSE (17) or in the space-principal component domain as in k-t
PCA (18). In the context of incoherent or random undersampling , the norm of the regularizer in [5] may be
modified to promote sparse solutions (19):

7 - argmin; ||(§—E-Y||z+/1||¢"7||1 (6]

where & refers to an operator to transform the image estimate into a sparse representation. In a particular
implementation, the sparsifying transform consists of the spatio-temporal gradient or total variation operator (20).
There is a wide range of different implementations of the fundamental concepts available today.

Clinical application

Example images of contrast-enhanced 3D perfusion images acquired with 10x k-t PCA in a cardiac patient are
demonstrated in Figure 5. Based on the whole-heart coverage of the method, image fusion of 3D perfusion maps
with low-dose CT angiographic data becomes possible (21).
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Figure 5. 3D myocardial perfusion images (lower panel) revealing a lateral perfusion defect in a 65-year old patient. The
perfusion defect and the culprit lesion are seen matched in the image fusion of MR perfusion and CT angiography data (top
panel, center); adapted from (21).

Meanwhile a number of clinical studies using highly accelerated 2D and 3D perfusion imaging methodology have
been published (22-25) providing data on the benefit of high spatial resolution and/or whole-heart coverage.
Based on current evidence, the translation of the methods for wider use is warranted.

Outlook

Further technical advances are under way to push spatiotemporal resolution by exploiting compressed sensing and
parallel imaging jointly (26), by radial and spiral trajectories in conjunction with k-t undersampling (27,28) or by
using localized spatio-temporal constraints (29). A very interesting avenue of development concerns new
approaches for driven steady-state imaging without magnetization preparation or gating (30,31) simplifying the
patient setup and increasing robustness against arrhythmias.

While most clinical studies so far have used qualitative or semi-quantitative perfusion metrics, absolute
guantification of myocardial blood flow is much desired (32). The impact of scan acceleration, noise and other
artifacts on quantitative analysis is a current topic of research and will be briefly discussed.
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