

Lower glutathione (GSH) concentration in the posterior cingulate cortex of healthy human elders measured at 7 T

Malgorzata Marjanska¹ and Melissa Terpstra¹

¹Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, United States

Target Audience: aging and dementia researchers, geriatricians, and MR spectroscopists

Purpose: Oxidative stress occurs at an early stage of age related cognitive decline¹. Ascorbate (Asc, vitamin C) and glutathione (GSH) are key contributors to the antioxidant network. Although lower ¹H MRS GSH signal has been measured in the occipital cortex (OCC) of an elder cohort² that finding could have been confounded by differing transverse relaxation (T_2)³. The purpose of this work was to utilize short echo time (T_E) ¹H MRS to overcome confounding by age associated difference in T_2 to quantify GSH concentration ($[GSH]_{\text{brain}}$) in the aging brain. Innovation in focusing multiple transmitters to optimize power is utilized to scan a brain region that is more pertinent to the pathology of Alzheimer's disease (AD), i.e., the posterior cingulate cortex (PCC). Finally, we utilize a uniquely high field to facilitate Asc quantification. Our hypotheses were that GSH signal differences in the OCC would be less pronounced than when measured at long T_E and that age associated GSH differences would be more pronounced in the PCC than the OCC.

Methods: Normal volunteers, 7 young (age 18-22, 2 subjects scanned 3 times) and 5 elderly (age 70+, 2 subjects scanned 3 times), were studied using a 7-T, 90-cm horizontal bore magnet equipped with a Siemens console and body gradients. A home-built 16-element transmit-receive transmission line head array⁴ was used and transmit phase of each channel was optimized via individual 1 kW CPC amplifiers⁵.

In vivo ¹H NMR spectra were acquired from two voxels positioned in the OCC (volume of interest, VOI = 8 cm³) and the PCC (VOI = 8 cm³) using a STEAM sequence with VAPOR water suppression and outer volume suppression⁶ (T_R = 5 s, T_E = 8 ms, NS = 64 for OCC, 128 for PCC). First- and second-order shims were adjusted using FASTMAP⁷. Metabolite concentrations were quantified using LCModel⁸ with a simulated basis set (18 metabolites and experimental macromolecule spectra) and 8 mM total creatine as internal reference.

Results: Figure 1 shows the quality of the data obtained in this study and VOI placement. In the OCC, $[Asc]_{\text{brain}}$ and $[GSH]_{\text{brain}}$ were the same for young and elderly cohorts (Table 1). In the PCC, $[Asc]_{\text{brain}}$ was the same and $[GSH]_{\text{brain}}$ was significantly lower for elderly than young subjects (Table 1). Figure 2 shows $[GSH]_{\text{brain}}$ in the PCC for all subjects and all scans.

Discussion: Constancy in $[Asc]_{\text{brain}}$ is consistent with expected homeostatic mechanisms⁹. A decrease in $[GSH]_{\text{brain}}$ with increasing age is consistent with data from animal models, although past studies were not localized to the OCC or

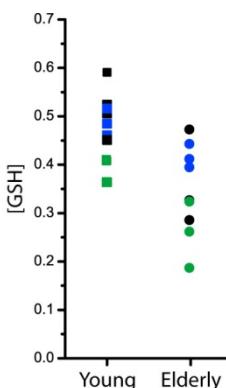


Figure 2. $[GSH]_{\text{brain}}$ in PCC of young and elderly subjects. The two retest subjects are designated in blue and green.

Med 2009, 10. E Head *et al.* J Neurochem 2002, 11. K Kantarci *et al.* Brit J Radiol 2007.

Acknowledgements: R01AG039396, P41 EB015894, P30 NS076408, S10 RR026783.

References:

1. MF Beal *et al.* Ann Neurol 2005,
2. U Emir *et al.* NMR Biomed 2011,
3. M Marjanska *et al.* PLoS One 2013,
4. G Adriany *et al.* MRM 2008,
5. GJ Metzger *et al.* MRM 2008,
6. I Tkac *et al.* MRM 2001,
7. R Gruetter, I Tkac MRM 2000,
8. SW Provencher MRM 1993,
9. FE Harrison, JM May Biol

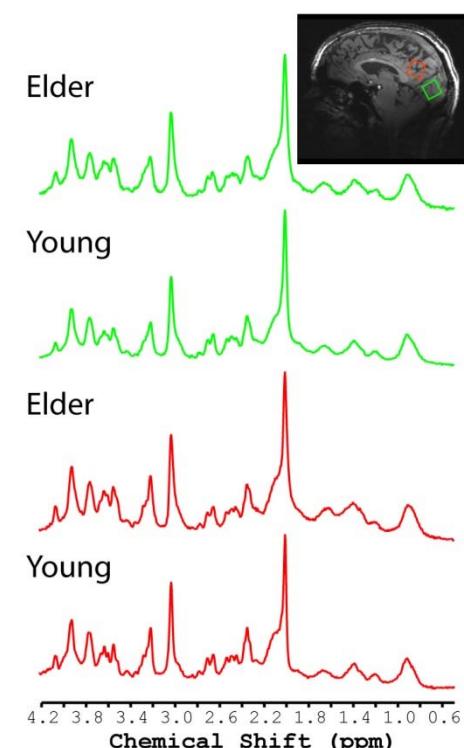


Figure 1. Representative spectra from one young and one elderly subject measured from OCC (green) and PCC (red).

Table 1. Mean \pm SD $[Asc]_{\text{brain}}$ and $[GSH]_{\text{brain}}$ in the two brain VOIs.

VOI	Metabolite	Young	Elderly	<i>p</i>
OCC	Asc	1.23 ± 0.15	1.38 ± 0.22	0.12
	GSH	0.48 ± 0.10	0.45 ± 0.15	0.56
PCC	Asc	1.13 ± 0.24	1.28 ± 0.20	0.15
	GSH	0.48 ± 0.06	0.35 ± 0.09	0.003