

B₀ DRIFT AND RESPIRATORY MOTION CORRECTION BY DUAL-ECHO SUSCEPTIBILITY CORRECTION (DESC)

Di Xu^{1,2}, Steven M Shea^{1,3}, Wesley D Gilson¹, and Sunil G Patil¹

¹Center for Applied Medical Imaging, Imaging and Computer Vision, Siemens Corporation, Corporate Technology, Baltimore, Maryland, United States, ²Department of Biomedical Engineering, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States, ³Department of Radiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States

PURPOSE To propose a novel iterative reconstruction-based method named dual-echo susceptibility correction (DESC), which compensates susceptibility changes due to systematic B_0 drift and respiratory motion and calculates accurate temperature difference maps (ΔT) during thermal therapies, such as laser-induced thermal therapy, radio-frequency ablation or High Intensity Focused Ultrasound.

THEORY Proton resonance frequency shift (PRF) MR thermometry has been a popular method of choice for MR thermometry. PRF calculates temperature difference maps by subtracting pre-treatment baseline phase images from intra-treatment phase images. It relies on the principle that temperature rise (ΔT) can induce susceptibility changes (ΔB_0).¹ However, ΔB_0 contains not only $B_c(\Delta T)$, the susceptibility changes due to ΔT , but also δB , the susceptibility changes due to B_0 drift and respiratory motion. Thus, PRF is sensitive to respiratory motion and B_0 drift.² DESC removes δB by iteratively modeling this term from the ΔB_0 measured by Multi-Pathway EPI (MP-EPI). This sequence samples two phase images: Φ_1 (FISP) and Φ_2 (PSIF) at two echoes: TE_1 (FISP) and TE_2 (PSIF), in each TR.³ Thus, ΔB_0 can be calculated by:⁴ $\Delta B_0 = \frac{\phi_1 - \phi_2}{\gamma(TE_1 - TE_2)}$. Iterative reconstruction is performed as follows:

1) δB is estimated by a polynomial function²:

$$\delta B_i = \begin{pmatrix} 1 & x_0 & y_0 & \dots & y_n^4 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & y_n & \dots & y_n^4 \end{pmatrix} \begin{pmatrix} c_0 \\ \vdots \\ c_{15} \end{pmatrix} = XC_i, \quad [1]$$

where $c_0, \dots c_{15}$ are the coefficients of the polynomial function (set as ones for the 1st iteration) and i is the current iteration.

2) Calculate the intermediate B_0 shift corrected temperature difference map derived from Madore et al.³

$$\Delta T_i = \frac{I_1(\phi_1^{therm} - \phi_1^{base} - \gamma TE_1 \delta B_i) + I_2(\phi_2^{therm} - \phi_2^{base} - \gamma TE_2 \delta B_i)}{\gamma \alpha B_0 (TE_1 I_1 + TE_2 I_2)} \quad [2]$$

, where $\phi_{1,2}^{base}$ and $\phi_{1,2}^{therm}$ are sampled at pre-treatment and intra-treatment respectively; I_1 and I_2 are magnitude images from FISP and PSIF.

3) Solve c at iteration i (i.e. C_i) by the least square solution of:

$$XC_i = \Delta B_0 - B_c(\Delta T_i), \quad [3]$$

where $B_c(\Delta T_i) = B_0 \alpha \Delta T_i$, where $\alpha = 0.001 \frac{ppm}{^\circ C}$ is the PRF change coefficient for aqueous tissue. Once $|C_i - C_{i-1}| < 0.001$, the algorithm stops, and an accurate ΔT is reconstructed.

METHODS All experiments were performed on a 3T scanner (Magnetom Trio, A TIM system, Siemens, Germany). **Phantom** To simulate the temperature rise due to thermal therapy, tube 1 and 2 were stored in a refrigerator (1°C) overnight before the experiment and were imaged in the morning. As a reference, tube 3 and 4 were kept at room temperature (19°C). A GRE sequence was used as a reference to detect the temperature changes (ΔT). ROIs were placed within each tube to measure the ΔT (mean \pm standard deviation). To mimic the B_0 -related changes, a linear gradient of 1mT/m in the readout direction was turned on during the acquisition of intra-treatment images by MP-EPI. **Normal Human Subjects** To evaluate the respiratory motion correction by DESC, normal human subject experiments were performed ($N=3$). During the scans, curves of respiratory motion were synchronized and recorded by a respiratory bellows placed on the chest of the subjects. B_0 drift was extracted as the coefficient c_0 of the smooth modeling function. **Imaging Protocols** In all experiments, GRE was sampled as: $TE=10$ ms, $TR=40$ ms, flip angle=15°; MP-EPI used: $TE_1=11$ ms, $TE_2=14$ ms, $TR=18$ ms, EPI factor=5, flip angle=30°. The other parameters were: $FOV=300 \times 300 \text{ mm}^2$, image matrix=128x128, slice thickness 5 mm. To evaluate DESC, ΔT from MP-EPI without DESC was calculated by using equation [2] from Madore et al.³

RESULTS and DISCUSSION Figure 1 depicts the ΔT maps (°C) of all tubes (1-4) obtained using GRE (Fig 1a), MP-EPI with no B_0 correction (Fig 1b) and MP-EPI with DESC (Fig 1c). Their ΔT s are: Tube 1: 7.5 ± 0.2 (GRE), 4.2 ± 0.3 (MP-EPI), 7.1 ± 0.2 (MP-EPI with DESC); Tube 2: 8.4 ± 0.3 (GRE), 3.8 ± 0.3 (MP-EPI), 8.4 ± 0.3 (MP-EPI with DESC); Tube 3: 0.9 ± 0.1 (GRE), -3.5 ± 0.2 (MP-EPI), 1.2 ± 0.2 (MP-EPI with DESC); Tube 4: 1.5 ± 0.1 (GRE), -8.1 ± 0.3 (MP-EPI), 1.6 ± 0.2 (MP-EPI with DESC). Thus it can be observed that the proposed DESC method reduces the B_0 -related changes induced by linear gradient. Figure 2 shows that the proposed DESC method can reduce the B_0 drift and the respiratory motion of a normal human subject. Significant susceptibility changes are observed in Fig 2c, since the baseline and the intra-treatment phase images were sampled at 2-minute intervals (Fig. 2a) and different respiration phase. In Fig 2b, 0.3 Hz B_0 drift over the two-minute scan is shown, and a 0.003 Hz/s linear change is observed due to respiration. Fig 2c shows pronounced temperature inaccuracies due to B_0 drift and respiratory motion (arrows). By using the proposed DESC method, those inaccuracies are minimized as seen in Fig 2d.

CONCLUSION The proposed DESC method can minimize the B_0 changes due to systematic B_0 drift and respiratory motion and calculate accurate temperature difference (ΔT) maps, thereby overcoming the limitation of baseline subtraction method.

REFERENCES 1. Rieke et al JMRI 2008; 2. Madore et al MRM 2011; 3. Haacke et al John Wiley 1999; 4. Grissom et al Med Phy 2010.