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Purpose: Diffusion weighted spectroscopy (DWS) probes the diffusion properties of intracellular metabolites such as N-acetyl aspartate (NAA),
creatine (tCr) and choline (tCho), and is thus a unique tool for compartment-specific assessment of tissue microstructure L Single-volume (SV) DWS
has been shown to yield meaningful and reproducible results in humans'™, however only a few attempts have been made so far to obtain DWS
images of brain metabolites with DW chemical shift imaging (CSI)*”. The main challenge has been to obtain robust and reproducible DWS maps.
The multi-shot nature of the acquisition, combined with the low signal-to-noise ratio and the relatively high gradient strength needed for adequate
diffusion weighting of the slow diffusing metabolites, all contribute to strong inter-shot phase and amplitude fluctuations that strongly affect the
resulting DW spectra. Here, we show for the first time a method that accounts for both amplitude and phase inter-shot fluctuations, and generates
robust, reproducible and anatomically meaningful DW-CSI and metabolite apparent diffusion coefficient (ADC) maps. The method presented here
uses a real-time, navigator-based scheme which allows instantaneous re-acquisition of any corrupted diffusion-weighted k-space lines, as well as
post-processing correction of gradient-induced phase fluctuations. We present test-retest results that confirm the robustness of the DW-CSI maps,
and show meaningful correlation between the ADC of NAA and the voxel-wise tissue composition.
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Fig.1. (A) Planning of the 2D DW-CSI experiment with VOI shown in
yellow. (B) Spectra obtained from a single voxel of the VOI for b=0 and b=
2870 from 3 diffusion gradient directions (C) NAA+NAAG maps obtained
for each separate condition (D) ADC map for NAA+NAAG obtained from
one subject.

Methods: Experiments were performed on a 7 Tesla Achieva Philips MRI scanner
equipped with a 32-channel receive coil array. Data acquired from 5 healthy
volunteers (28.6+1.5 years, 1 female, 4 males) consist of 3D T-weighted images
(0.85x0.85x1.00mm’, TR/TE=4.94/2.17ms), Diffusion Tensor Images (2x2x2mm’,
TR/TE= 10,000/66 ms, one b=0 image and 15 encoding directions with a b-value of
1000 s/mm?) and 2D DW-CSI data from a supra-callosal axial slice (Fig.1A)
obtained with a Point Resolved Spectroscopy (PRESS) sequence with bipolar
diffusion  weighting  gradients (FOV=96x96mm?®  matrix  size=12x12,
VOI=48x42x8mm3, voxel size=6x6x8mm3, TR/TE: 3 cardiac cycles (
~3000ms)/100ms, turbo spectroscopic imaging (TSI) factor=2, readout BW=5kHz,
256 sample points, diffusion gradients applied in 3 orthogonal directions with 6=
34ms , A= 50ms , b-values of 0 and 2870 s/mm?, total scan time 15-20 minutes).
One of the subjects was scanned twice in order to evaluate the robustness of the
method with a test-retest comparison. Water suppression with variable Pulse power
and Optimized Relaxation Delays (VAPOR)® was de-optimized for the diffusion
acquisitions to acquire sufficient water signal for eddy current correction. For each
k-space location, a navigator (~30 data points prior to phase-encoding) was
acquired. The amplitude of the navigator of the first few acquisitions at each DW
condition was used to set a threshold for the subsequent spectral acquisitions, and
data that fell below that threshold were reacquired.

Data Analysis: Gray matter (GM) and white matter (WM) tissue probabilities were
calculated with FSL FAST software based on the T;-weighted image. The average
tissue fractions were calculated for each CSI voxel within the VOI with in-house
developed MATLAB® code. DW-CSI data were also analyzed with in house

developed MATLAB® routines in which the eddy current and diffusion related phase fluctuations are corrected. Spectral analysis was performed
with LCModel and the results were read into a MATLAB code where the DW maps for each condition and the ADC map were calculated for each

metabolite of interest. The process is illustrated in Figure 1.
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