
Figure 1. Local magnetic field of the phantom data. 
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Target Audience: Researchers interested in removing background magnetic field, such as for quantitative susceptibility mapping 
(QSM) and susceptibility weighted imaging.  

Background: In QSM, the magnetic susceptibility is 
mapped out by solving the field-to-source inverse 
problem using the phase data. Since only MRI data in 
tissue region are available, the study of tissue property 
requires the elimination of the magnetic field caused by 
sources outside the tissue region [1-5]. This background 
removal directly affects the calculated susceptibility 
values [4], and is also a required pre-processing 
procedure for susceptibility weighted imaging [5].  

Theory: Denote by ்݂  the measured total field (along 
and scaled to B0) estimated from MRI data. Then 
Maxwell’s Equations lead to ∇ଶ்݂ = ሺ∇ଶ/3 − ௭߲ଶሻ߯, 
where ߯ ≪ 1 is tissue susceptibility [6]. Inside a region of interest (ROI), 	்݂ = ௅݂ + ஻݂ with ௅݂ the field caused by local tissue and ஻݂ 
the background field caused by susceptibility sources outside ROI, ie, ∇ଶ ஻݂ = 0 for points in the ROI. Existing methods such as PDF 
[2, 4] and SHARP [3] can be viewed as solvers for this partial differential equation (PDE). Here we remove the background field by 
directly solving the Laplace equation with specified boundary values (LBV). Because the boundary values are not easily available and 
the local field is typically one order of magnitude smaller than the background field, we make the approximation that ஻݂ = ்݂  on the 
boundary of the ROI. Similarly, the local tissue field ௅݂ can be directly solved from a boundary value problem of Poisson’s equation. 
Laplace’s and Poisson’s equations are well studied elliptic PDEs and their boundary value problems can be solved successfully by 
various schemes including finite difference, spectral, and finite element methods [7]. In this work, we use the full multigrid method. 

Methods: A cylindrical water phantom with two 
vials containing Gadolinium solutions was scanned on GE 
1.5T scanner with matrix size 256x256x80, voxel size 
0.9375x0.9375x1.2 mm, field of view (FOV) 240 mm, flip 
angle 15°, bandwidth ±62.5 kHz, 10 echoes, 
TE1/dTE/TR=3.1/3.1/52.2 ms. Brain data of healthy 
subjects were acquired using the gradient echo pulse 
sequence on GE 3T scanner with the following parameters: 
matrix size 256x256x116, voxel size 0.9375x0.9375x1.2 
mm, FOV= 240 mm, flip angle 20°, bandwidth 62.5 kHz, 7 
echoes, TE1/dTE/TR = 2.8/5/37.5 ms. For the SHARP 
method, the k-space kernel threshold 0.01 was implemented 
as the 3D discrete Laplacian operator to retain data near the 
ROI boundary. The PDF, SHARP and the proposed LBV 
methods were implemented in C, C++ and C++ 
respectively. 
Results: In Figure 1 and 2, we show the local tissue field 
calculated from three different background removal 
methods. In the phantom study, the error of SHARP appears 
to have long wavelength variations. PDF and LBV have the 
largest error near the ROI boundaries. In the brain study, 
calculated local fields show overall agreement on tissue structures while differences are mostly evident on the ROI boundaries. The 
computation times of the brain data for the three methods are 5s (SHARP), 14s (PDF) and 6s (LBV).   

Conclusion: We propose a new method to remove the background field by solving the PDE of the background magnetic field 
assuming simple boundary conditions. The proposed Laplacian boundary value (LBV) method for background field removal retains 
data near the boundary and is computationally efficient. Tests on an experimental phantom and in in vivo data sets showed that LBV 
was more effective than the SHARP and PDF methods. 
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Figure 2. Local magnetic field of the brain data. 
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