3D quantification of wall shear stress and oscillatory index using finite-element interpolations in 4D flow MR data of the

thoracic aorta.
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PURPOSE:

Actual methods quantify wall shear stress (WSS) parameters in one or several 2D planes from data obtained from 2D or 3D CINE PC-MRI acquisitions'. This approach
however, does not provide the whole distribution of the WSS or oscillatory index in the entire vessel of interest. Moreover, the process of locating the 2D planes
manually is dependent on the user and may lead to results that have low reproducibility. A few methods based on computational fluid dynamics (CFD) have been
studied to obtain the WSS in 3D**. These methods provide the WSS and oscillatory distributions from realistic vascular geometries, and from several boundary
conditions, such as wall stiffness, in-flow velocity profiles, and non-Newtonian blood models, which may not necessarily coincide with real conditions. In this work, we
propose a 3D finite-element based methodology to compute the WSS of whole thoracic aorta from 3D CINE PC-MRL
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The 3D WSS distribution can be appreciated in figure 1-A, obtained in 1 volunteer and in l | 01" 3D: 0,012
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figure 2-A obtained in the arotic coarctation phantom. The 3D WSS contour mean and !
standard deviation values obtained with our method were lower than the 2D WSS values
as can be seen in Figure 1 and 2 from B-C. We also found that, in general, the OSI

contour mean values were also lower. The Bland-Altman plot showed a systematic bias ::: A ) :: A & D)
between both methods with an average WSS contour mean difference of 0.069+0.03 2l /) A - ., A AA  evssuan
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Our results showed that the distribution shape of the 3D WSS was similar than the 2D 0l S 0 300008
WSS, however, the proposed method showed lower values. We believe this is because in RS S S e,

the 3D quantification we used the complete deformation tensor (Eq. 1), and for the 2D Figure 2. A) WSS magnitude for the Phantom in 3D, in B), C) and D)
analysis there are some component of the tensor matrix (Eq.1 red), which are omitted and ~ shows the magnitude of WSS for the AO1, AO2 and AO3 section
the third column was eliminated with the normal vector in 2D. Those component are the  respectively.

derivatives of the through plane velocity along z which is not available when a single
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We have developed a novel methodology to calculate 3D WSS based on FE interpolations 2 0,09 ] .y L T .
and 3D PC MRI data, which provides an excellent approximation of local WSS values in o < ‘.. - 7 ‘v.:' .,
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Figure 3. Bland-Altman plot of cardiac phase averaged of magnitude of
wall shear stress contour mean comparing the proposed method in 3D
and the 2D method from volunteer data.
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