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Highlights: 
 

• Amount and distribution of adipose tissue in the body as well as lipid content 
and composition in muscle and liver can be considered as biomarkers for pre-
diabetes and obesity. New biomarkers indicating resting activity of brown 
adipose tissue and musculature are on the horizon.  

• Selective MR imaging and/or spectroscopy techniques have to be applied 
together with suitable referencing strategies in order to achieve reliable 
quantitative data, which can be used as biomarkers. 

• Correlations between MRI/MRS related biomarkers and “traditional” 
biomarkers derived from metabolic testing or blood samples are often limited. 
Many genetic, environmental and behavioural factors are influencing on the 
development of diabetes type 2 and obesity; and on the “traditional” and “MR-
related” biomarkers as well. 
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Due to our modern lifestyle the number of people with metabolic diseases as 
diabetes type 2, with obesity and with so-called metabolic syndrome which later on 
often leads to cardiac infarction or stroke, is steadily increasing. For diagnosis of 
manifest diseases and for monitoring of their course several well-known “traditional” 
biomarkers already exist. Blood glucose levels, results of standardized glucose 
tolerance tests, body mass index, blood pressure, and so forth are examples of these 
established biomarkers. Clinical diagnosis and monitoring of manifest diseases are 
often mainly based on analysis of blood samples and sometimes on physical 
examinations and weighing.  
 
In the past decades two developments took place simultaneously:  
 

- MRI and MRS non-invasively provide insight into anatomy and tissue 
distribution in the human (and animal) body and allow quantitative analysis of 
tissue composition. New whole-body MR systems allow recording of highly 
resolved 3D data sets of the entire body in reasonably short measuring time. 

 
- It is known that diabetes and obesity are diseases evolving over a long time of 

several years or even decades, before the disease manifests irreversibly. The 
course of this undesired progression towards manifest disease seems to be 
influenced by internal (genetic) and external (nutrition and physical activity) 
factors. It is evident that several organ systems are involved in the 
development of the diseases. More knowledge about the pathogenesis of the 
diseases is important for adequate prevention measures in general. Selection 
of optimal prevention strategies for each individual case is problematic. 
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Today it is not yet understood why some individuals tend to develop diabetes and 
others do not. It is also unclear why some individuals remain lean even with 
sedentary work in an office and other individuals are not able to keep their weight 
within a healthy range. On the other hand it is well known that metabolism in the body 
and individual behaviour are ruled by complex processes in different organ systems, 
and that those processes cannot be well followed using traditional biomarkers alone.  
 
For this reason, testing the potentials of MRI and MRS for elucidation of relevant 
changes of volume, composition or even function of many organs (musculature, 
adipose tissue, liver, pancreas, and brain) is an exciting matter of current research. 
Interesting material about possible MR-related biomarkers has been presented 
during the ISMRM meeting in 2013 (1) and in the ISMRM workshop on fat-water 
separation in 2012 (2).  
 
Musculature: 
Skeletal musculature uses both fatty acids and glucose as source of energy. The 
amount of fatty acids inside myocytes (IMCL) can be assessed by 1H spectroscopy 
(3,4). It was found by several groups that subjects with insulin resistance (and well 
trained subjects) show higher IMCL levels than insulin sensitive controls (5,6). 
Several studies on regulation of IMCL during fasting or short or long term physical 
activity have been performed by different groups (7,8). Measuring glucose uptake in 
musculature can be done using 13C spectroscopy (after administration of 13C 
enriched glucose) (9) or by 18FDG-PET (10). 31P spectroscopy can be used for 
assessment of mitochondrial function by measuring the recovery of PCr after suitable 
exercises (11). Assessment of the individual level of muscular energy consumption at 
rest requires invasive tracer techniques (eg, 18FDG-PET). Repetitive incoherent 
motion sensitive MRI indicates strong inter-individual variability of mechanical muscle 
activity at rest, which could possibly indicate a new perspective for characterization of 
musculature by MRI.     
 
Adipose tissue: 
The volume and distribution of adipose tissue is highly variable in the human body. 
Volumes of different adipose tissue compartments can be assessed non-invasively 
by whole-body MRI (12,13). High correlation of visceral adipose tissue with insulin 
resistance and clearly lower metabolic influences of subcutaneous fat have been 
found and confirmed by several groups (14,15). The role of further adipose tissue 
compartments which seem to be regulated differently (eg, interscapular fat (16) and 
perivascular fat (17)) has been partly investigated in further studies. Localized 1H 
spectroscopy of adipose tissue reveals variable fatty acid composition in different 
compartments (18) and also a clear dependence of the ratio between unsaturated 
and saturated fatty acids on the total volume of visceral fat (19).   
 
Liver:  
Hepatic lipid content can be quantitatively assessed by volume selective 1H MRS and 
by chemical shift selective MRI approaches. 1H MRS usually works using the water 
signal from liver as internal reference for quantification of lipids (20,21). Spectroscopy 
provides higher sensitivity than imaging even to low lipid fractions and also some 
information on fatty acid composition (22) (although quantitative assessment of fat 
composition in liver is clearly more demanding than of pure adipose tissue). Since 
liver fat is not distributed homogeneously in all subjects, fat selective imaging is often 
more accurate than spectroscopy in measuring the total fat fraction in liver and its 
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spatial distribution. Frequency selective excitation techniques (23), in-phase/opposed 
phase approaches (24), and derived DIXON (25) or IDEAL (26) techniques are 
applicable for such quantitative measurements. In those measurements, the water 
signal from liver can also be used as internal reference. On the other hand 
comparison of liver fat signals to signals recorded from adjacent pure subcutaneous 
fat (fat content approx. 95 %) allows more reliable quantification even in cases with 
clearly affected liver parenchyma (eg, in cirrhosis). Evaluation of T2* in liver has been 
shown to be a good marker for assessment of hepatic iron depositions (27).    
 
Pancreas:  
Several recent studies focused on quantitative assessment of lipids in pancreas. It is 
discussed that pancreatic lipids might affect insulin producing beta-cells negatively 
(due to lipotoxicity), and therefore some interest in MR measurements of pancreatic 
fat arose (28). In contrast to liver spatial distribution of lipids in pancreas is mostly 
inhomogeneous and concentrated along the duct structures or in peripheral areas 
(where fatty infiltration can be hardly distinguished from fatty material surrounding the 
pancreas). For this reason assessment of pancreatic fat as biomarker by 
spectroscopy or imaging remains critical.  
Perfusion per volume in the endocrine part of the pancreas (Langerhans islets) is 
known to be clearly higher than in the exocrine part. Therefore a study examined 
pancreas perfusion by ASL techniques in healthy volunteers, and it was found that 
corpus and tail show slightly higher perfusion than the pancreas head (29). This is in 
accordance to the known higher density of Langerhans islets in the corpus and tail of 
the pancreas, but the role of perfusion measurements for assessment of the 
endocrine portion of the pancreas must be further investigated.  
         
Brain:  
MRI revealed macro- and micro-structural changes in the brain in diabetic and obese 
subjects (30,31).  Furthermore, resting state activity assessed by functional MRI 
based on the BOLD effect was reduced in diabetic and obese subjects (32). 
 
Summary: 
Many studies in large cohorts with variable states of obesity or variable states of 
insulin resistance conducted in the past 15 years revealed clear correlations between 
quantitative MR data (MR-related biomarkers) and the status of the disease (which is 
characterized by “traditional” biomarkers). In addition, even promising correlations 
between MR-related biomarkers and success of therapeutic interventions (especially 
lifestyle interventions (33)) have been reported.  
 
Altogether, MR-related biomarkers for diabetes and obesity are so far mainly 
reflecting volumes of specific tissue compartments or their composition (fat fraction in 
parenchyma and fatty acid composition in some cases). Already available and tested 
“MR biomarkers” seem not to be highly relevant for individual diagnosis, since 
diagnosis is performed using traditional biomarkers (eg, blood glucose levels or BMI). 
However, individual response to lifestyle interventions or other therapies can often be 
monitored better by MRI and MRS than by traditional biomarkers alone. Furthermore, 
assessment of MR biomarkers in cross-sectional or better longitudinal studies in 
large cohorts of pre-diabetic or slightly obese people allows us to learn more about 
the pathogenesis of the diseases. A final and important point is the potential role of 
“MR biomarkers” for the selection of the most promising lifestyle intervention and/or 
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drug therapy in individual patients in order to prevent the further development of the 
disease.  
 
Recently, several new MR techniques for assessment of functional imaging of tissue 
perfusion, activity of brown adipose tissue and mechanical activity of skeletal 
musculature at rest have been proposed and tested (34). Their significance as 
biomarkers has to be evaluated in further studies.   
 
List of established MR biomarkers for diabetes and obesity research 
 

- assessment of whole body fat fraction 
- visceral adipose volume  
- subcutaneous adipose volume  
- liver fat fraction  
- concentration of intramyocellular lipids (IMCL) in calf muscles 
 

List of MR biomarkers under investigation 
 

- visceral and subcutaneous adipose tissue composition (saturated versus 
mono- and polyunsaturated fatty acids) 

- special adipose tissue compartments: interscapular fat volume, perivascular 
fat volume, intermuscular fat volume (IMAT)  

- signs of liver fibrosis (elastography, diffusion) 
- pancreatic fat 
- brown adipose tissue (BAT) volume   

List of new (more functional) biomarkers 
- brown adipose tissue (BAT) activity (eg, by BOLD) 
- perfusion of liver and pancreas (eg, by IVIM) 
- mechanical muscular activity at rest (eg, by IVIM)  
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