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Introduction: Inadequate photon attenuation correction in Positron Emission Tomography (PET) has serious implications, such as inaccurate cancer staging or failure 
to detect tumours [1]. In PET-CT hybrid imaging, a low dose CT image is used to create a tissue-specific attenuation coefficient map (μmap) using a bilinear transform 
[2]. In hybrid PET-MRI, however, attenuation has to be corrected in the absence of CT. MRI-based attenuation correction (MRAC) is challenging because there is no 
direct correspondence between tissue attenuation coefficient and image intensity in MRI. Particularly, bone and air exhibit similarly low MRI signal but very different 
attenuation coefficient. In the majority of existing MRAC methods, image voxels are classified into different tissue types (mainly bone, soft tissue, sinuses, lung and air) 
with distinct attenuation coefficients. The classes are then assigned with the corresponding attenuation coefficient (an empirical constant) to create a discrete μmap [2, 
3]. These methods often suffer from quantisation error, failing to describe the continuously varying attenuation coefficient in a single tissue type, such as lung and 
sinuses. To address these problems, other MRAC methods employ regression algorithms to calculate a continuous μmap from ultrashort-echo-time (UTE) MRI and/or 
population-based attenuation correction template [4, 5]. Nevertheless, UTE has not been clinically applicable as its specific absorption rate is too high. Template or atlas 
based methods are not subject-specific and may fail to represent inter-subject anatomical variation caused by specific pathology (e.g. bone removal).      
In clinical settings, different MR images are usually acquired for each patient, 
particularly oncology patients. These may include structural, diffusion-weighted, 
and dynamic contrast enhanced (DCE) MR images. In previous studies, we 
demonstrated that ucPET data was useful in classifying bone, air and soft tissue in 
MR head images [3, 6]. Similar findings were reported for whole-body PET-MR 
imaging recently [7]. In this study, we present a regression based, subject specific, 
MRAC for PET-MRI using clinically available MRI and the raw (uncorrected) PET 
image (ucPET). 
Subjects and Methods: Thirteen patients with confirmed world health organisation 
grade III and IV brain tumour were scanned. Structural MR images were acquired 
using MP-RAGE sequence with FOV 24x25.6x17.6 cm, TR/TE/TI 2300/2.26/900 
ms, flip angle of 90, and 1 mm isotropic resolution. DCE-MRI were acquired with a 
3D fast gradient echo sequence with matrix 256x256, TR 8.1 ms, 4 averages, voxel 
size 1.1x0.9x2 mm3. A 4-dihydroxy-6-[18F]-fluoro-L-phenylalanine (FDOPA) PET 
scan with an isotropic image resolution of 2 mm was acquired within 48 hours of 
the MRI scans. A low dose CT transmission scan (5 seconds) was acquired before 
administration of an intravenous injection of the tracer (150mSv). The FDOPA 
images were acquired between 10 and 30 minutes post injection. All MR images 
were acquired using a 3T Siemens TimTrio (Siemens, Erlangen, Germany) and 
FDOPA PET scans using a Philips PET/CT GXL scanner (Eindhoven, Netherlands). 
Intra-subject rigid registration was performed to align all images to the MP-RAGE 
image and resample to 1 mm isotropic voxel size. Inter-subject registration was not 
attempted. A sample set of images of the nasal slice is shown in Fig. 1. 
For each patient, a pseudo-CT image was generated using a voxelwise regression. A 
total of over 400 features in categories of gradient features, textual features, and 
contextual features [3] were extracted from MP-RAGE, pre- and post-contrast DCE, and ucPET images. In view of the large number of features, random forest based 
regression was chosen because of its immunity to ‘curse of dimensionality’ [3]. An axial slice going through the nasal cavity, which is the most problematic region, was 
chosen for each patient and used for training the algorithm. 500 voxels per slice were randomly selected from each subject for training the random forest. 
Leave-one-subject-out cross validation was employed to evaluate the regression performance. For 
measuring the performance of the method the background from all images was eliminated and two metrics 
were calculated: (i) the Pearson’s correlation between the regression result and the original CT image 
(inside the head), and (ii) the Dice Similarity Coefficient (DSC) score between the segmentation result and 
the ‘ground truth’ obtained by thresholding CT images. 
Results: The mean correlation between the regression result and the original was 0.82, with a minimum of 
0.75 and a maximum of 0.89 (p<0.01). The mean DSC of the different tissue classes are summarised in 
Table 1, while a sample qualitative result is illustrated in Figure 1. 
Discussion and Conclusion: We presented a regression based method to generating a subject-specific pseudo-CT image from a set of clinically available images for 
oncology patients, including structural and DCE MR images, and attenuation uncorrected FDOPA PET image. The proposed method negates the need for tissue 
segmentation or population-based template construction. The features used are invariant to translation and rotation and therefore no inter-subject spatial alignment is 
required. Preliminary results exhibit high correlation and DSC between the pseudo-CT and the real CT. These quantitative results suggest that the generated pseudo-CT 
has the potential to be useful for photon attenuation correction in the absence of CT image, as in the case of hybrid PET-MRI. Qualitative analysis of the results also 
suggests that regression based attenuation map has the potential to overcome the intensity quantisation limitation of classification based methods. As shown in figure 1, 
the cavity in the occipital bone can only be reconstructed using regression but is lost when the image is quantised based on tissue classes.  
Figure 1 also demonstrates the limitation of this study in the form of biased estimation of bone tissue in the centre of the brain, where the soft tissue is indicated by the 
CT image. This bias is likely to be the result of the low number of sample points that was used for training of the random forest regression. A larger number of sample 
points should increase the accuracy of the result but will also dramatically increase calculation times. This aspect will be further explored in the next step of this study. 
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  Table I. DSC between CT and regression result. 

 Mean Min Max 

Bone 0.68 0.57 0.77 

Air 0.73 0.63 0.82 

Soft tissue 0.86 0.81 0.92 

 
  a      b      c 

 

 d      e      f 
Figure 1: Sample results: (a) original CT image, (b) CT close up view on the 
cavity in the occipital bone (c) CT-based “ground truth” using thresholding (d)
regression result, (e) regression close up view on the cavity in the occipital
bone (f) regression-based thresholding.  
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