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Purpose: To cope with today’s healthcare challenges of providing cost-effective care with constant quality, advanced image analysis techniques that
automatically extract anatomical information from complex, large image datasets are required [1, 2]. Examples of MRI applications that can benefit
from such anatomical intelligence are: operator guidance for planning scans, organ-specific automated motion detection, automated labeling of image
volumes, organ-oriented navigation of large datasets, and post-processing applications such as automated organ segmentation. In this work, computer
vision techniques based on machine learning and Haar-like features [3] were extended to 3D and applied to automatically detect and localize a
number of target organs in 3D water-fat separated, whole-body MR images. Performance and accuracy of the selected classifiers were evaluated in a
cross-validation framework. The benefit of using the joint information provided by water and fat separation was investigated.

Methods: A total of 36 (25 males, 18 females) whole-body water-fat separated datasets, acquired with a Dixon dual-echo sequence (TR / TE, / TE,:
3.2/1.11/2.0 ms, flip angle: 10°) on a 3T MR scanner (Achieva, Philips Healthcare, Best, The Netherlands) and subsampled to an isotropic
resolution of 3.0x3.0x3.0 mm®, were retrospectively analyzed (data courtesy of Prof. Osman Ratib, University Hospital of Geneva, Switzerland). For
each dataset, 3D boxes delimiting the target organs (lung, heart, liver) were manually edited based on pre-defined landmarks. These 3D boxes were
used as ground-truth to train the classifier and to evaluate the detection accuracy. To characterize the appearance of the target organs, generic 3D
image features derived from the Haar-like features [4] were devised: for a given position in the image, features were computed as the difference
between the average image intensities of two disjoint cuboids of arbitrary size and position (Fig. 1). For organ detection, an optimal selection and
combination of the 3D features computed on the water and fat images was learned from the training data using boosted decision trees [5]. Different
classifiers with varying boosting type, tree depth, and with features derived only from water images, only from fat images, or from both water and fat
images, were compared in a 6-fold cross-validation experiment. The classifier performance was evaluated by computing the F,-score [6], which is a
widely used measure of test accuracy and ranges from O (lowest performance) to 1 (best performance). For each target organ, the configuration
yielding the maximum F,-score was selected to produce the final detection results, again in a 6 fold-cross validation manner. Finally, the distances
between the manually edited and the automatically computed boxes were computed.
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Results: For all target organs, the best classifier always consisted of a combination of image features extracted from both water and fat images. The
corresponding F,-scores are listed in Tab. 1. For the large majority of classification configurations, the classifier trained on both water and fat images
resulted in a higher F,-score than the corresponding classifiers trained only on water, respectively fat, images. The mean distances between
automatically detected and manually edited organ box centers are summarized in Tab. 1, with an average absolute error below 2 cm in all 3 target
organs. Examples of lung, heart, and liver detection obtained with the trained classifiers are shown in Fig. 2. Only in one case the algorithm failed to
detect the liver and heart (Fig. 4, left), while in another case the liver was detected at a false position (Fig. 4, right).

Fig. 3: The two patient data (out of 36)
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Discussion: These preliminary results suggest that the application of simple, yet powerful classification techniques known from the computer vision
literature can be applied for the robust and automated extraction of anatomical knowledge from MR images. These techniques allow addressing a
plurality of target anatomies in a single framework, which makes them very attractive for large scale applications. In this study, the combination of
water and fat images obtained with a Dixon sequence resulted in improved detection accuracy. Further improvements of the detection accuracy may
be reached by increasing the number of training datasets and allowing for variable scale factors of the detector window.
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