
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Comparison of DWIs corresponding to a slice from 
one diffusion direction (top row), FA maps (middle row) and 
FA maps color-coded by the direction of the first eigenvector 
(bottom row), from the gold-standard (column 1), the noisy 
data (column 2), the BFGS-based algorithm (column 3) and 
the proposed algorithm (column 4). Zoomed-in regions 
(highlighted by the red rectangular) are shown in the bottom 
left corners of each image. The relative root-mean-squared 
errors for FA values are also shown in red letters. 
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Introduction: Effective denoising of magnitude diffusion imaging data is highly desirable in practice due to a number of practical reasons (such as 
availability and easier application). One key challenge in denoising magnitude diffusion-weighted (DW) images is to handle the noncentral χ noise 
model1,2. Various methods have been proposed to address this problem from a statistical estimation perspective and achieved impressive denoising 
results3-8. However, these methods are usually computationally demanding because of the need to solve the associated nonlinear optimization 
problems, limiting their practical utility, especially for processing a large number of 3D high-resolution DW images (DWI). Recently, an efficient 
quadratic majorize-minimize (MM) scheme was proposed for statistical estimation problems with noncentral χ distributions9. In this work, we extend 
this scheme to non-central χ denoising with joint rank and edge constraints8. We show that the resulting new algorithm can achieve similar or slightly 
better denoising performance compared to a previously proposed BFGS-based algorithm8, but with significantly reduced computation time. 
Theory: Given a sequence of noisy magnitude DW images Y = [y1,y2,…,yQ], where each vector yq stands for one image, the goal in denoising is to 
estimate the noise-free image sequence X = [x1,x2,…,xQ] from Y. We formulate this problem into the following penalized maximum likelihood 
estimation problem: 
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where L(.) comes from the noncentral χ likelihood model, U and V are rank r matrices (r<Q<<M), n is the number of coils used for acquisition, In(.) 
is the nth-order modified Bessel function of the first kind, ߪଶ is the noise variance, M is the number of voxels in each DW image, Q is the number 
of images, and R(.) is a regularization function enforcing a joint edge constraint8,10. The final denoised images are computed as ܆෡ ൌ  ෡. Solving the܄෡܃
problem in Eq. (1) requires extensive computations. We developed an MM-based fast algorithm to address this issue. Specifically, based on the MM 
framework9,11, we derived an upper bound on L(.) to transfer the original optimization problem into a series of simpler problems where the upper 
bound is minimized. It can be shown that L(.) is upper bounded by 
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where ܆௠௤ሺ௜ሻ  correspond to the estimated image intensities at the ith iteration and C is a constant. According to Eq. (2), at each iteration, the original 

problem can be transferred into the following problem ܃෡, ෡܄ ൌ argmin܄,܃ฮ܄܃ െ ෡ฮிଶ܇ ൅  (3), which is a rank and edge constrained Gaussian		ሻ,܄,܃ሺܴߣ

denoising problem with modified data ܇෡ and can be solved very efficiently using an alternating minimization scheme12. 
Methods: We have evaluated the performance of the proposed algorithm with 
comparison to a previously proposed BFGS-based algorithm8 using different sets of 
data. One of them was from a high quality exvivo pig brain data set13. The original 
DWI series has 64 3D volumes, including 61 diffusion directions at b = 4009mm2/s and 
three volumes at b = 0. Each 3D volume has 128x128x70 voxels. Noncentral χ noisy 
data (with n=1) was simulated from this high SNR data. The joint rank and edge 
constrained denoising as in Eq. (1) was applied to process the entire 4D data set 
simultaneously with r=12, solved by the BFGS-based algorithm and the proposed 
MM-based algorithm, respectively. The regularization parameter λ  was manually 
optimized for each algorithm by comparing the results to the high SNR data. 
Results: Figure 1 illustrates the denoising performance of the proposed algorithm by 
comparing the DWIs and tensor estimations from different methods, treating the 
original high SNR data as a gold standard. As can be seen, the rank and edge 
constrained formalism produces excellent denoising results, both from the BFGS-based 
algorithm and the MM-based algorithm. The new algorithm obtains slightly better 
results with significantly less time (BFGS: 46491s; MM: 2760s).  
Conclusion: We have presented a new MM-based algorithm for solving the 
optimization problem associated with magnitude image denoising with joint rank and 
edge constraints. The proposed algorithm achieves similar or even better performance 
compared to a previously used BFGS-based algorithm, but with significantly reduced 
computation time. We expect the new algorithm to enhance the practical utility of rank 
and edge constrained denoising and allow for the incorporation of more prior 
information for further improvements in denoising performance. 
Reference: [1] Gudbjartsson et. al., MRM, 1995. [2] Constantinides et. al., MRM, 1997. [3] S Basu et. 
al., MICCAI, 2006. [4] N Wiest-Daesslé et. al., MICCAI, 2008. [5] Aja-Fernandez et. al., IEEE-TMI, 
2008. [6] Descoteaux et. al., MRM, 2006. [7] Manjon et. al., PLoS ONE, 2013. [8] Lam et. al., MRM, 
2013. [9] Varadarajan and Haldar, IEEE-ISBI, 2013. [10] Haldar et. al., MRM 2013. [11] Hunter and 
Lange, Am Stat, 2004. [12] Lam et. al., ISMRM, 2013. [13] Dyrby et. al., HBM, 2011. 
Acknowledgement This work was supported in part by the following research grants: 
NIH-P41-EB015904, NIH-P41-EB001977, and NIH-1RO1-EB013695. 

Proc. Intl. Soc. Mag. Reson. Med. 22 (2014) 0410.


