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Introduction Conventional diffusion MRI provides exquisite sensitivity to tissue microstructure, but often lacks clear biological interpretation. 
Improved specificity may be possible with diffusion “spectrum” measurements, in which tissue micro-geometry is reflected in the diffusive 
movement of water at different temporal frequencies (ω). Diffusion within simple restricting geometries is straightforward to calculate1, enabling one 
to model axons in white matter as simple cylinders2. While considerable attention has been given to intra-cellular compartments, hindered diffusion 
outside cells, such as the extra-axonal space (EAS), has received less attention2. Hindered diffusion is often assumed not to exhibit frequency 
dependence; however, simulations have recently demonstrated strong frequency dependence akin to restricted compartments3. Here, we present a 
model for the EAS diffusion spectrum and compare predictions with simulated spectra for a range of packing geometries. 

Model The EAS is often characterized in terms of its “tortuosity” (λ), which reflects the packing geometry 
and density. For abutting cylinders (infinite λ), EAS water is trapped in restrictive pores, while looser packing 
(reduced λ) creates gaps between cylinders through which water occasionally diffuses. We can thus consider 
EAS water to be “exchanging” between regimes of restricted diffusion (when trapped in the spaces between 
cylinders) and free diffusion (when diffusing through gaps, with free diffusion coefficient Df). This two-
component (restricted and free) rapid exchange model is given in Eq. 1, where the fraction of time spent in 
each regime depends on tortuosity (free fraction ff = 1/λ2). The primary challenge, then, is to find a model for 
the “pores” between cylinders to describe the restricted component, Dr(R,ω). We propose to model this compartment as a restrictive cylinder with an 
apparent radius R that smoothly transitions from R0 at low ω to R∞ at high ω (Eqs. 2–5). At low frequencies, molecules fully sample the space, and 
the apparent radius relates to the mean distance between the pore centroid and perimeter, Rpore. At high frequencies, the spins remain close to their 
initial position, and the apparent radius is primarily driven by the surface-to-volume ratio (S/V). We empirically determined that this apparent radius 
is accurate if modulated by the tortuosity (λ) and fractional cylinder separation (p), as in Eqs. 3–4. The change in radius with frequency is inversely 
related to the diffusion time required to displace a distance R0 (ωd

 = 2πτ–1, τ = R0
2(2Df)

–1). For random packing, Rpore is given by a distribution and the 
diffusion spectrum is a weighted sum of the attenuation spectrum per pore. The expression for Dr(R,ω) is that of an impermeable cylinder1. 

  
Methods We conducted Monte Carlo simulations4 of spins diffusing around parallel, impermeable cylinders, including square, hexagonal and 
random packing (Fig. 1). Periodic (square and hexagonal) geometries covered p = 1–2 and ~0.1–10 μm. Random packing of a gamma distribution of 
radii5 spanned a range of cylinder volume fractions (fcyl). Oscillating gradients6 from 2 Hz–1 MHz were applied perpendicular to the cylinder axes 
with b = 1000 s/mm2. Simulations used Df

 = 2 μm2/ms and no noise was added. These simulations were compared to forward predictions of our two-
compartment model for all geometries (Eqs. 1–5). For periodic packing, all model parameters can be calculated analytically from the cylinder 
geometry, while random packing requires a different approach, as follows. S/V was calculated analytically. Tortuosity is defined by the reduced 
diffusion distance under hindrance, and is thus calculated from the apparent diffusion at zero frequency: λ2 = Df/D(ω = 0). Distributions of Rpore and p 
were calculated numerically by segmenting the EAS using boundaries drawn between all cylinder pairs (Fig. 1C–D). 

 
 

Results & Discussion Simulated EAS spectra are shown in Fig. 2 along with the model prediction, demonstrating remarkable agreement across a 
diverse range of packing geometries (an intermediate radius is shown, but results were similar at all radii spanning two orders of magnitude). The 
spectra exhibit a similar shape to restricted diffusion, but do not in general asymptote to zero diffusion at low frequencies, the one exception being 
the truly restricted spectra for abutting cylinders (p = 1). This model clearly improves on previous estimates of the EAS, which assume a flat 
spectrum (Df/λ2) that is only accurate at low frequencies. Our EAS model can be merged with existing expressions for the intra-axonal space to 
provide a more accurate model of white-matter microstructure. Ultimately, this approach may enable one to quantify axonal packing and radius 
distribution properties. However, measurements remain challenging due to the need for measurements at high frequency (~kHz), placing serious 
demands on gradient hardware. 
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Fig. 1: Cross-section of square, hexagonal, and random packings (D 
is a magnified view of C). Actual cylinder distance (L) is related to 
the abutting case (Labut) by p = L/Labut. Pore boundaries are indicated 
by straight lines and pore centroids by dots. For random packing, 
Labut for any given boundary is the sum of the radii (R1 and R2) of the 
two cylinders through which the boundary passes. 

Fig. 2: EAS spectra demonstrating good agreement of model prediction (lines) with Monte Carlo simulations over a range of packing densities. 
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