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Introduction: To reduce biopsy-related complications and sampling errors, hepatic MR Elastography (MRE) has been developed as a safe, more
comfortable, and less expensive noninvasive alternative to liver biopsy for diagnosing hepatic fibrosis (1-3). Recently, many studies have shown that the
mechanical properties of liver tissue appear promising for the differentiation of several pathologic conditions of the liver (4-7). For instance, liver stiffness
can have a static component that is mainly determined by extracellular matrix composites and structure (e.g., hepatic fibrosis), and a dynamic
component that is affected by intrahepatic hemodynamic changes (e.g., inflammation and portal hypertension) (8,9). It is likely that independent
mechanical properties other than “shear stiffness”, including other model-free properties (e.g., the complex shear modulus, shear wave attenuation and
the frequency dispersion of mechanical properties) or model-based viscoelastic parameters, will improve the identification of specific pathophysiologic
changes of the liver. Before liver MRE is adopted as a primary tool for monitoring liver disease progress, we need a comprehensive assessment of
which hepatic tissue mechanical properties are sensitive to specific microstructure constitutions and pathophysiological states.

Magnitude 80 Hz — Methods and Materials: All experiments were implemented on a 3.0-T whole-body GE imager (HDx,
& . Driver . GE Healthcare, Milwaukee, WI), using a custom birdcage coil. Fig. 1 (right) demonstrates our

& - experimental setup. A silver needle is used to generate shear waves throughout the liver. The mice
l'] i were anesthetized with 1.0-1.5% isoflurane. As shown in Fig.1 (left), wave images were acquired with a
multislice, spin-echo EPI MRE sequence with three motion-encoding directions using seven different
harmonic vibrations at frequencies of 80, 100, 120, 160, 200, 300, 400 Hz. The acquired 3-D/3-axis
wave data had a resolution of 0.3x0.3x2 mm?®. They were interpolated to 0.15x0.15x2 mm?® and filtered
with the curl operator to remove undesired bulk motion, processed with 20 evenly spaced 3-D
directional filters (radial bandpass filter: 4™-order Butterworth filter, cut-off frequencies = (0.001, 24)
‘§\ cycles/FOV), smoothed with a 3x3x3 quartic kernel and then inverted with a direct inversion of the
-] Helmholtz equation to calculate the complex shear modulus. Nine well-established viscoelastic models
(10-13) were applied to calculate mechanical properties of the liver. All quantities were reported as
means and standard deviations of ROIs drawn to encompass as much of the liver as possible that had significant wave propagation. Statistical analysis
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was performed with a two-sided paired t-test and 5% significance. Fig.2 (Exp.1)
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