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INTRODUCTION: Magnetic resonance elastography (MRE) of the brain has emerged as a promising technique for detecting and characterizing 
neurodegeneration [1] and cerebral tumors [2]. Recent advances in methodology have allowed for greatly improved estimates of mechanical properties, 
though acquisition of high-quality MRE data remains slow, thus limiting its clinical utility. A typical MRE dataset requires acquisition of full vector 
displacements in three spatial dimensions, two gradient polarities, and multiple phase offsets. These images share a large amount of information, as 
they are, in theory, a single magnitude image modulated by harmonic phase patterns. In this work we accelerate MRE through specialized multishot 
sparse sampling and a low-rank model that captures the strong correlation between images. 
THEORY: MRE involves sampling the same object with varying gradient direction, polarity, and displacement 
phase offsets. Each dataset can be considered a time series of images, ߩሺܚ,  ሻ, so highly correlated as to beݐ
linearly dependent or low-rank. We can induce low-rankness of ߩሺܚ,  ሻ by modeling it as Lth order partiallyݐ
separable (Eq.1) with ℓ spatial coefficient maps and temporal basis functions ݑℓሺrሻ and ݒℓሺݐሻ, respectively [3]. ߩሺܚ, ሻݐ = ∑ ሻ௅ℓୀଵݐℓሺݒሻܚℓሺݑ    (1)     ሼݑොℓሺrሻሽℓୀଵ௅ = argminሼ௨ℓሺܚሻሽℓసభಽ ܡ‖ − Ωሺ∑ ℱሼݑℓሺܚሻሽݒℓሺݐሻ௅ℓୀଵ ሻ‖ଶଶ    (2) 

where y is the acquired data at undersampled locations indicated by Ω , and ℱ  is the spatial Fourier 
Transform operator. With appropriate L, the model in Eq. 1 is more robust to experimental imperfections than 
the conventional harmonic MRE model, yet still strong enough to allow sparse sampling without significant 
image degradation. The typical MRE dataset consists of 3 directions, 2 polarities, and 8 phase offsets, for a 
total of 48 images in the time dimension. Thus, the full model order is L=48; however, due to the shared 
information between images, the effective model order of the dataset is much lower. Figure 1 presents the 
NRMS accuracy of low-rank approximation of an experimental MRE dataset. There is a bend in the curve at 
L=6 (97.4% accuracy), with higher model orders primarily capturing noise instead of signal. If the low-rank 
temporal basis functions are known (i.e. extracted from a navigator), the low-rank spatial basis functions can 
be estimated using Eq. 2 and thus the entire dataset can be recovered. This also allows for data to be 
undersampled in ሺܓ,  ሻ-space (through undersampling operator Ω in Eq. 2) and reconstructed at low modelݐ
order without increasing noise level.  
METHODS: Human brain MRE data acquired with a multishot spiral imaging 
sequence [4] was used to investigate the use of low-rank constraints during image 
reconstruction. The acquisition used six variable-density spiral k-space with 20 
slices acquired at a 2x2x2 mm3 isotropic spatial resolution using a Siemens 3T 
Allegra with a single-channel head-coil and external actuation at 50 Hz. Navigator 
data were collected from the oversampled portion of each k-space shot, and 
temporal basis functions were extracted from the singular value decomposition 
(SVD) of the gridded navigator data. Although the navigators are low-resolution, 
they share the same temporal basis functions as the high-resolution images of 
interest. The extracted temporal basis functions were used in two types of 
reconstructions to demonstrate the performance of rank-constrained MRE. First, all 
acquired data was used to reconstruct spatial basis functions of varying model 
order through Eq. 2. In addition to the full-rank reconstruction (L=48), we 
reconstructed datasets using ranks of 22, 15, 10, and 7. Second, we 
undersampled the data to demonstrate the ability to accelerate acquisitions. 
Undersampling involved removing acquired shots to achieve 2x, 3x, or 4x 
acceleration, while requiring each k-space location to be sampled the same 
number of times over all 48 images, and then reconstructing using a reduced 
model order. The impact of reduced model order and data undersampling was 
evaluated through the resulting mechanical property maps. Shear modulus maps 
were calculated for each dataset using nonlinear inversion (NLI) [5]. 
RESULTS: Low-rank modeling and sparse sampling can produce displacement 
fields that still generate the same mechanical property estimates as conventional 
MRE. Figure 2 presents the z-displacements and real storage moduli of fully 
sampled datasets reconstructed with both full rank (L=48) and low rank (L=10). The displacement fields between the two are nearly identical and give 
rise to very similar property maps, with a difference in mean properties of less than 1%. Of the model orders we tested, L=10 was the lowest that 
produced highly accurate property maps, so we also used this model order for all undersampled reconstructions. Figure 3 presents displacement fields 
from datasets reconstructed using varying levels of ሺܓ,  ሻ-space undersampling, along with the real shear moduli after inversion. The displacement fieldsݐ
show only small differences in wave patterns, and the undersampled reconstructions generally do not exhibit a loss of SNR compared to the full-rank, 
fully sampled reconstruction in Figure 2. The low-rank constraint allows for less data to be used without decreasing SNR, leading to very similar 
mechanical property maps at high acceleration factors up to 4x. Differences in mean properties were approximately 1% for 2x acceleration, and 
approximately 5% for 3x and 4x. These differences are within the expected variations in mean properties [4], and may be addressed by optimizing the 
sparse sampling scheme. 
CONCLUSIONS: We have demonstrated that MRE data can be modeled as a series of partially separable functions, and that using rank-constrained 
reconstruction of undersampled data results in minimally unchanged property estimates. Given the low model order of typical MRE data, acquisitions 
can be accelerated by a factor up to 4x without significant loss of SNR or inversion quality. This ultimately can result in high-resolution brain MRE 
acquisitions on the order of 2-3 minutes, and can be combined with additional parallel imaging undersampling and multishot acquisition schemes for 
further acceleration. 
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Fig. 1: NRMS accuracy of 
approximating an experimental MRE 
data set at different model orders. 

Fig. 2 (left): results of rank-constrained 
reconstructions with full (L=48) and 
reduced (L=10) model order. Fig. 3 
(above): results of undersampling with 
reduced model order (L=10). 
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