

The Dependency of Cerebral Blood Flow on End-tidal CO₂ Pressure

Eidrees Ghariq¹, Xingxing Zhang¹, Andrew G. Webb¹, Mark A. Van Buchem¹, Albert Dahan², and Matthias J.P. Van Osch¹

¹C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center (LUMC), Leiden, Zuid-Holland, Netherlands, ²Department of Anesthesiology, Leiden University Medical Center (LUMC), Leiden, Zuid-Holland, Netherlands

TARGET AUDIENCE – Neuroscientists using ASL/BOLD MRI for CO₂ cerebrovascular reactivity measurements or quantitative BOLD

PURPOSE – Cerebrovascular reactivity (CVR) due to CO₂ inhalation is believed to be a measure of the capacity of the cerebral blood vessels to match the cerebral blood flow (CBF) to the metabolic needs of the brain. CO₂ CVR has been shown to be disturbed in many neurological diseases, e.g. steno-occlusive diseases of the brain. ASL and BOLD MRI are increasingly used for the measurement of regional cerebrovascular reactivity to CO₂. The acquired data are often treated in the same way as fMRI data, i.e. a linear relationship is assumed between the end-tidal CO₂ pressure (P_{ET}CO₂) and the CBF or BOLD signal. However, already in 1964 Reivich showed that the CBF CO₂ reactivity curve in monkeys has a sigmoidal shape¹ and more recently the sigmoidal relationship between CO₂ and CBF velocity (CBFv), measured via transcranial doppler (TCD), has been reported in humans². Furthermore, Bhogal et al. have recently showed that BOLD CO₂ reactivity curve has a sigmoidal shape. Thus the assumption of a linear relationship between P_{ET}CO₂ and CBF/BOLD could potentially confound any reported findings. The purpose of this study was to accurately measure the relationship between P_{ET}CO₂ and both CBF and BOLD reactivity. Additionally, it is tested whether these relationships differ between the anterior and posterior cerebral circulations.

METHODS – All the scans were performed on a Philips 3 Tesla Achieva scanner under a local IRB approved protocol. A dual-echo arterial spin labeling (DE-ASL) MRI sequence was used to acquire simultaneous BOLD and CBF data from ten healthy young adults. (Scan parameters: TR/TE1/TE2=4000/10/26 ms; labeling/post-label duration=1650/1525 ms; 2.75x2.75x6 mm³; 17 slices; background suppressed). The stimulation was a 6 minute CO₂ ‘ramp’ varying from hypocapnia to hypercapnia repeated 4 times (total scan duration = 24 min). To achieve hypocapnia the subjects were instructed to follow a respiratory cue with a predefined frequency (17 respirations per minute) while breathing room air (O₂/CO₂=21/0 %). This pace was also followed during the hypercapnic episodes. During the hypercapnic episodes the fraction of inhaled CO₂ was increased stepwise from 0 to 7.5 % via a gas mixer, causing a corresponding increase in P_{ET}CO₂ (Figure 1). The partial pressures of the gasses in the inhaled/exhaled air was continuously measured with a Datex Capnomac Ultima capnograph monitor situated outside the MRI scanner. In addition to the DE-ASL scans, M₀ scans were acquired for the quantification of the ASL data and regional perfusion maps to separate the perfusion territories of the three feeding arteries of the brain (left and right internal carotids and basilar arteries).

The BOLD data were calculated from the second echo images and the ASL data from the first echo images of the DE-ASL scans. The ASL data were quantified to CBF values using the M₀ scans based on the quantification model proposed in the recently submitted ASL white paper. Both CBF and BOLD data were averaged for each of the three perfusion territories and then normalized to their respective mean values and plotted as a function of P_{ET}CO₂. These time traces were then fitted using both a linear model [y(x)=c+d*x] as well as a general logistic model [y(x)=A+(K-A)/(1+exp(-B*(x-M)))] describing the sigmoidal curve. For both models the adjusted R² of the fit was calculated for every subject. Alternatively, to minimize any bias due to the fitting of a sigmoidal function with four degrees of freedom to CBF vs. P_{ET}CO₂ data, cross-correlation coefficients were calculated between the CBF and P_{ET}CO₂ traces, and the CBF trace and a sigmoidal transformation of the trace of P_{ET}CO₂ based on the BOLD reactivity curves. These cross-correlation coefficients were then used as an unbiased measure of a sigmoidal versus linear relationship between CBF reactivity and P_{ET}CO₂ in the measured P_{ET}CO₂ range.

RESULTS – Figure 1A and B show time traces of the BOLD and CBF data (red) and the trace of P_{ET}CO₂ (blue) for the basilar artery territory of a representative subject. The lower parts of the figures show plots of the corresponding BOLD and CBF data as functions of P_{ET}CO₂. As can be seen from the images, the BOLD CO₂ reactivity curve shows a clear sigmoidal shape, while the CBF data is more noisy, preventing a clear conclusion about the shape of the curve to be drawn. This was confirmed from a comparison between the adjusted R² values from the two models. Fitting the BOLD data with a sigmoidal function resulted in significantly higher R² values for all the perfusion territories, while this was not the case for the CBF data (Table 1). The non-superiority of a sigmoidal fit of the CBF-P_{ET}CO₂ curve was further confirmed by the high correlation coefficients of the CBF traces with their corresponding P_{ET}CO₂ traces compared to the coefficients between CBF traces and the sigmoidal transformed P_{ET}CO₂ (Table 2). All the aforementioned findings were similar for all three perfusion territories.

DISCUSSION – Our results confirmed that BOLD-P_{ET}CO₂ relationship is best described by a sigmoidal function. However, CBF reactivity curve was better fitted by a linear function compared to a sigmoidal function. One possible explanation could be that the CBF data had a considerably lower SNR compared to the BOLD data. However, this was less probable considering the results of the alternative analysis which were also in favor of a linear relationship. An alternative explanation is that the non-linear part of the sigmoidal CBF reactivity curve is not reached in this range of P_{ET}CO₂ values. Reivich for example reported that in monkeys the maximum CBF values were only achieved at arterial CO₂ values above 20 kPa¹. This contradicts the sigmoidal relationship observed between CBFv and P_{ET}CO₂ in ref 2 in the 3-8 kPa P_{ET}CO₂ range. This contradiction could be explained by the fact that the authors used TCD to measure CBFv in the medial cerebral artery (MCA), which is known to be unreliable due to changing MCA diameter at higher P_{ET}CO₂ values (> 6 kPa) (results submitted in a separate abstract), but warrants further study. Furthermore, it is not unexpected that the BOLD signal changes reach their maximum at lower P_{ET}CO₂ values than CBF signal changes, because as CBF increases the concentration of deoxyhemoglobin (dHb) at the venous blood compartment keeps falling until all the deoxy-Hb is washed out. At that moment the BOLD signal flattens while CBF signal continues to increase; an assumption often made in the quantitative BOLD literature⁴. Finally, based on these results it is confirmed that the assumption of a linear BOLD-P_{ET}CO₂ relationship is incorrect and can lead to biased findings, especially because the sigmoidal BOLD reactivity curves are not centered around the same P_{ET}CO₂ value in every subject. But unlike BOLD data, the analysis of the CBF data could safely be done on the assumption of a linear relationship with P_{ET}CO₂ within the 3-8 kPa range. This advantage potentially makes CBF a more robust measure of regional CO₂ cerebrovascular reactivity.

CONCLUSION – The analysis of the BOLD CO₂ reactivity should be performed with caution because of the sigmoidal shape of the BOLD reactivity curve in the range of 3-8 kPa P_{ET}CO₂ as most often used for CVR measurements. CBF is more robust for CO₂ CVR measurements, because in 3-8 kPa P_{ET}CO₂ range CBF is linearly associated with P_{ET}CO₂.

REFERENCES – [1] Reivich M, *Am. J. Physiol.* **206**, 1964; [2] Battisti-Charbonney A. et al., *J. Physiol.* **589**, 2011; [3] Bhogal A. et al., *ISMRM 2013* **0852**, 2013; [4] Simon A. B. et al., *PLoS One* **8**, 2013.

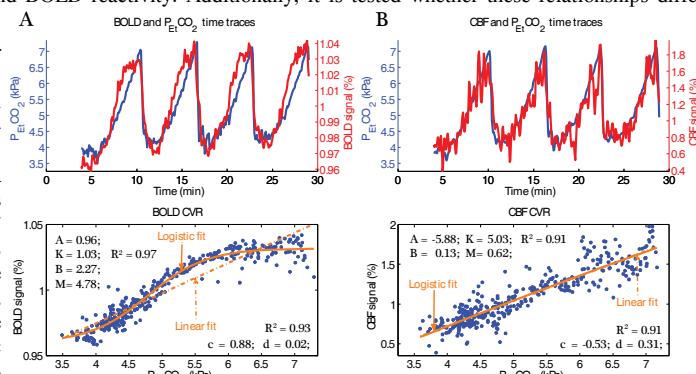


Figure 1. P_{ET}CO₂ values and BOLD and CBF signals are plotted as functions of time (upper parts of the figure). The lower panels are plots of BOLD and CBF signals as a function of P_{ET}CO₂. The orange lines are the linear and logistic (sigmoidal) fits of the data.

	ICA1	ICA2	BA
BOLD	0.952	0.952	0.967
Linear	0.931	0.927	0.945
p-values	0.010	0.021	0.022
CBF	0.713	0.731	0.843
Linear	0.712	0.727	0.842
p-values	0.648	0.243	0.517

Table 1: Mean adjusted R² values for the two models (linear and sigmoidal) for the different perfusion territories. The p-values correspond to a paired t-test between the two fits.

	ICA1	ICA2	BA
P _{ET} CO ₂	0.974	0.976	0.981
Sigmoid	0.955	0.957	0.955
p-values	<0.0001	<0.0001	<0.0001

Table 2: Mean cross-correlation coefficients between the CBF signal and the P_{ET}CO₂ signal and sigmoidal transformed P_{ET}CO₂. The lower row is a list of the p-values from a paired t-test.