

R2* of water and fat in hepatic iron overload: implications for R2*-corrected fat quantification

Debra E. Horng^{1,2}, Diego Hernando¹, and Scott B. Reeder^{1,2}

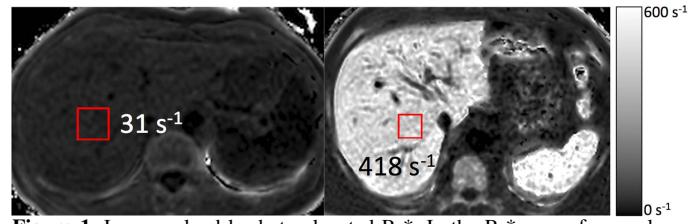
¹Radiology, University of Wisconsin-Madison, Madison, WI, United States, ²Medical Physics, University of Wisconsin-Madison, Madison, WI, United States

Target audience: Researchers and clinicians interested in liver fat quantification.

Purpose: Accurate fat-fraction (FF) quantification using chemical shift-encoded techniques necessitates correction for R_2^* ($=1/T_2^*$) decay^{1,2}. Estimation of a common R_2^* for both fat and water (“single- R_2^* ”) has been shown to be more accurate and stable than independent estimation (“dual- R_2^* ”) in a clinical study³. However, that study was performed on a patient population without iron overload. The presence of iron in liver leads to elevated R_2^* (Fig. 1), and the relative increase of R_2^* of water and fat components is unknown. If these values are significantly different, this may compromise the accuracy of single- R_2^* correction methods. The **purpose of this work** is to characterize the R_2^* behavior of water and fat in the presence of liver iron, and to determine whether single- R_2^* correction is accurate for measurement of fat fraction (FF).

Methods: After obtaining IRB approval and informed consent, we performed liver scans on 42 subjects: 32 patients with known or suspected iron overload and 10 healthy controls. Chemical shift-encoded imaging and MRS was performed at 1.5T (SignaHDx, GE Healthcare, Waukesha, WI) and at 3.0T (MR750, GE Healthcare, Waukesha, WI) using 8-channel and 32-channel phased array coils, respectively.

At both field strengths, single-voxel MRS was performed with STEAM (STimulated Echo Acquisition Mode) in a single breath-hold, with $TE_1=10$ ms, $\Delta TE=5$ ms, 5 echoes. At 1.5T a multi-echo 3D SPGR acquisition was performed, with $TE_1=0.9$ ms, $\Delta TE=0.7$ ms, $TR=11$ ms, 6 echoes/TR, 2 interleaves, flip angle=5°, and matrix=144×128. At 3.0T a multi-echo 3D SPGR acquisition was performed, with $TE_1=0.6$ ms, $\Delta TE=0.6$ ms, $TR=5.9$ ms, 4 echoes/TR, 2 interleaves, flip angle=3°, and matrix=128×128.


FF was measured from MRS by AMARES fitting with jMRUI (Universitat Autònoma de Barcelona, Barcelona, Spain) and Matlab (Mathworks, Natick, MA). FF was also measured from the imaging data with a multi-peak, confounder-corrected^{4,5}, single- R_2^* model, performed with magnitude fitting to avoid the effects of eddy currents⁶. We compared the accuracy of FF measurement at 1.5T and 3.0T, using MRS as the reference. To evaluate the need for dual- R_2^* correction we measured the relative difference in R_2^* values of fat and water measured with MRS. R_2^* estimates were obtained from Lorentzian fits of the water and main methylene peaks, from the MRS data. Although the MRS R_2^* values are not necessarily the same as the imaging R_2^* values due to macroscopic B0 variations across the larger spectroscopy voxel, the *difference* between $R_2^*_{\text{f}}$ and $R_2^*_{\text{w}}$ in both spectroscopy and imaging should be the same since the water and fat signals are co-localized in the same voxel³.

Results: Out of the 42 exams, we identified 10 subjects with fatty liver at 1.5T and 8 at 3.0T (FF>5.6%, based on MRS). The 2 cases that had fatty liver at 1.5T, but not at 3.0T, had FF just below 5.6% at 3.0T. The linear correlation of $R_2^*_{\text{f}}$ and $R_2^*_{\text{w}}$ (measured from MRS) shows good overall agreement (Fig. 2): at 1.5T the fit is slope=1.00 [95% CI 0.70, 1.3], intercept=2.7 [CI -57, 63], $r^2=0.85$, and at 3.0T slope=1.14 [CI 0.72, 1.6], intercept=13 [CI -112, 137], $r^2=0.83$. Since the R_2^* of water and fat are very similar, we expect FF estimated using a single- R_2^* model to be accurate, even at high R_2^* . FF measured from imaging vs. FF measured from spectroscopy at two field strengths is plotted in Fig. 3. Linear regression demonstrates good correlation and agreement between imaging and spectroscopy at both 1.5T: slope=0.95 [95% CI 0.77, 1.1], intercept=1.5% [CI -0.93%, 3.9%], $r^2=0.93$, and at 3.0T: slope=0.84 [CI 0.53, 1.2], intercept=1.6 [CI -3.2%, 6.4%], $r^2=0.82$.


Discussion and Conclusion: Single- R_2^* correction is an accurate and acceptable model for R_2^* correction for fat quantification in the liver, even in the presence of iron overload, due to the minimal difference between $R_2^*_{\text{f}}$ and $R_2^*_{\text{w}}$. Single- R_2^* correction had previously been shown to be accurate, but only at normal iron levels (low R_2^*). The estimation of FF at high R_2^* using a single- R_2^* model already suffers from poor noise performance, particularly at 3.0T (note the increased CI). Dual- R_2^* correction introduces additional degrees of freedom that significantly degrade the noise performance of FF estimates⁷. Therefore it is fortuitous that a single- R_2^* model is accurate in the presence of iron overload.

References: 1. Yu H et al. JMRI. 2007;26(4):1153-61. 2. Bydder M et al. MRI. 2008;26(3):347-59. 3. Horng DE et al. JMRI. 2013;37(2):414-22. 4. Meisamy S et al. Radiology. 2011;258(3):767-75. 5. Hines CD et al. JMRI. 2011;33(4):873-81. 6. Yu H et al. MRM. 2011;66(1):199-206. 7. Chebrolu VV et al. MRM. 2010;63(4):849-57.

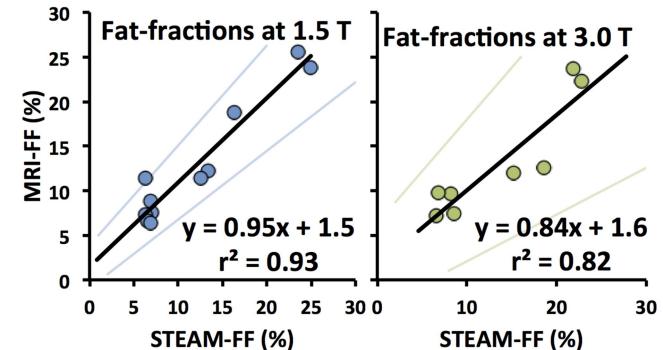

Acknowledgements: We acknowledge the support of the NIH (R01 DK083380 and R01 DK088925) and the WARF Accelerator Program. We thank Gavin Hamilton for the STEAM-MRS pulse sequence. We also wish to thank GE Healthcare for their support.

Figure 1. Iron overload leads to elevated R_2^* . In the R_2^* map of normal liver (left), the mean R_2^* in the ROI depicted is 31 s^{-1} ; in an iron-overloaded liver (right), the mean R_2^* in the ROI depicted is 418 s^{-1} . The ROIs are the same size.

Figure 2. The R_2^* of fat is close in value to the R_2^* of water, even at the elevated values that are observed in the iron-overloaded liver. The 95% confidence intervals are shown in light blue and light green lines.

Figure 3. Fat-fraction quantification is accurate over a wide range of fat and iron levels, at 1.5 T (left) and 3.0 T (right). The 95% confidence intervals are shown in light blue and light green lines.