

Fast Three-Dimensional Black-Blood MR Imaging for Carotid Artery Intra-plaque Haemorrhage Using DANTE-Prepared FLASH (3D-DASH)

Linqing Li¹, Luca Biasioli², Joshua T. Chai³, Matthew D. Robson², Robin P. Choudhury³, Ashok I. Handa⁴, and Peter Jezzard¹

¹FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom, ²OCMR, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom, ³Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom, ⁴Nuffield Department of Surgery, University of Oxford, Oxford, United Kingdom

Background: DANTE (Delays Alternating with Nutation for Tailored Excitation) pulse trains are a rapid series of low flip angle RF pulses interspersed with gradients. We have previously demonstrated that when DANTE pulse trains are used as a preparation module prior to imaging readout, the longitudinal magnetization of flowing spins is substantially attenuated, whereas the longitudinal magnetization of static tissue/fluid is mostly preserved^[1]. In this study we introduce a new DANTE-prepared 3D FLASH T₁ weighted (T1w) sequence (denoted '3D-DASH') that is able to generate 0.6 mm isotropic resolution carotid artery intra-plaque haemorrhage black blood images with an imaging speed better than 2 sec/slice. Imaging efficiency comparisons were also made between the current best 3D black blood (BB) technique, MSDE prepared FLASH (3D-MERGE)^[2] and the new 3D-DASH technique.

Materials and Methods: Subjects: 6 healthy volunteers (males, 24 to 35 years) underwent (i) DIR, (ii) 3D-DASH and (iii) comparison 3D-MERGE imaging. Additionally, 2 symptomatic patients with carotid artery disease underwent carotid vessel wall imaging (the presence of intra-plaque haemorrhage was subsequently confirmed from histology, not shown). Written informed consent was obtained from all subjects. All scans were acquired using a 3T Siemens Verio scanner. A pair of dual-channel surface coils (Machnet, Eelde, Netherlands) was used for the carotid scans. No breath holding was used. Cardiac gating was used for comparison DIR-prepared black blood scans. *Protocol:* axial imaging acquisition, identical 3D FLASH readout sequences for 3D-DASH and 3D-MERGE, FOV=150 × 150 × 60mm, matrix size 256 × 252 × 128, interpolated to 512 × 512, Number of averages = 2, iPAT = 2, FLASH flip angle $\alpha = 10^\circ$, slice resolution = 63%, phase and slice partial FT = 6/8, Fat suppression = water excitation-fast, TR_{internal} = 10 ms, BW = 130 Hz/pixel, resolution=0.6mm isotropic. Parameters for the DANTE module: flip angle (FA) $\alpha = 15^\circ$; Number of DANTE pulses $N_p=150$; time duration between DANTE pulses, $t_D=1$ ms; $G_{x,y}=20$ mT/m; gradient duration≈1 ms. Effective CNR was calculated for 3D-DASH and 3D-MERGE, accounting for scan durations.

Results:

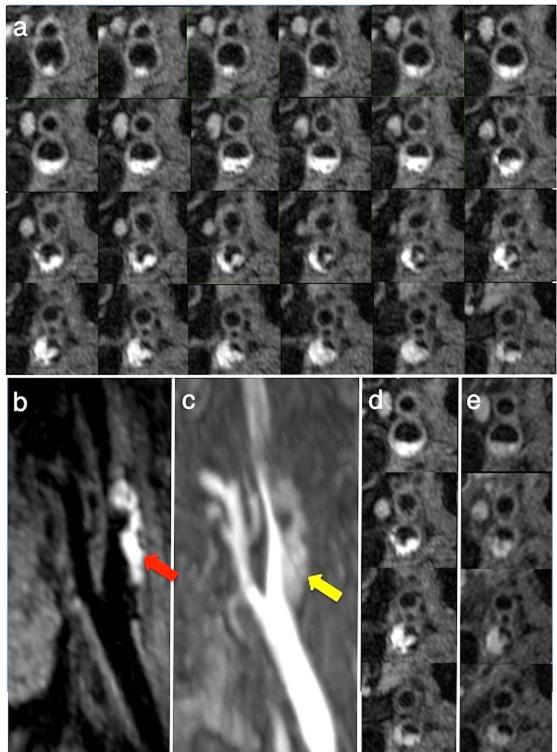


Fig. 1. T1w 3D-DASH images obtained from a patient with intra-plaque haemorrhage. a) 24 contiguous-slice whole plaque coverage from 3D-DASH images with isotropic 0.6 mm resolution. b) 3D-MPR sagittal view of the left carotid arteries reconstructed from the full 128-slice 3D-DASH dataset. c) 3D-MPR sagittal view reconstructed from the 3D-TOF data for comparison. d) and e) Axial view slices of 3D-DASH and DIR-prepared 2D-TSE images taken from the same slice positions for direct comparison.

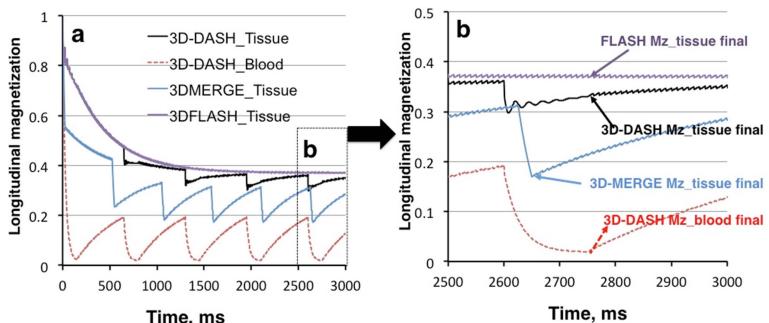


Fig. 2. a) Bloch Simulations showing longitudinal relaxation effects of T1w 3D-FLASH, 3D-DASH and 3D-MERGE protocols (including relaxation effects associated with the FLASH readout). b) Magnified block from (a) showing that 3D-DASH may have significant signal gain improvement compared with 3D-MERGE.

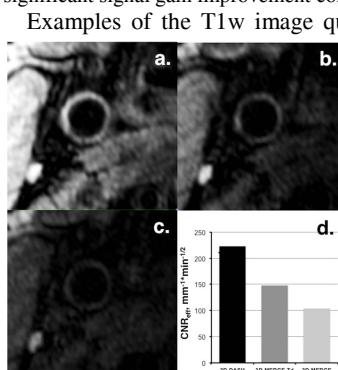


Fig. 3. Comparisons of effective CNR (same greyscale) from 3D-DASH, 3D-MERGE-Td (with post acquisition delay) and 3D-MERGE (without post acquisition delay) obtained from a representative healthy subject. a) Axial slice from 3D-DASH. b) Axial slice from 3D-MERGE-Td. c) Axial slice from 3D-MERGE. Note, the acquisition times of 3D-DASH and 3D-MERGE-Td are identical, whereas the acquisition time of 3D-MERGE is 1 minute shorter.

Conclusions 3D-DASH is a promising new sequence for fast black-blood T₁ weighted imaging of carotid artery intra-plaque haemorrhage.

Acknowledgements and References We thank the NIHR Oxford Biomedical Research Centre, British Heart Foundation, and Dunhill Medical Trust for grant funding.

[1] Li L, Miller KL, Jezzard P. DANTE prepared pulse trains: a novel approach to motion sensitized and motion suppressed quantitative magnetic resonance imaging. Magn Reson Med. 2012; 68:1423-1438.

[2] Balu N et al. Carotid plaque assessment using fast 3D isotropic resolution black-blood MRI. Magn Reson Med. 2011; 65:627-637.

for the 3D-DASH sequence with 0.6 mm isotropic resolution versus the gold standard single-slice DIR (double inversion recovery)-prepared 2D-TSE sequence with slice thickness 2 mm are shown in Fig. 1. The 3D-DASH scan acquisition time was 198 seconds, with >6 cm coverage (128 slices). The hyperintense signal on the T1w images indicates the presence of fresh intra-plaque haemorrhage (IPH) confirmed by histological examination. Compared with the current best 3D black blood (BB) technique MSDE prepared FLASH (3D-MERGE), through Bloch simulation Fig. 2 and in-vivo image Fig 3, 3D-DASH allows 75%-100% improvement in contrast-to-noise efficiency, CNR_{eff}.