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PURPOSE: The BEAR method1 is a recently proposed phase-based B1 mapping method. An important feature of BEAR is that the 
phase sensitivity to B1 can be manipulated with sequence parameters. We describe a new method that calculates the B1 distribution in 
a volume from multiple 1D BEAR projections, where each projection has a different B1 sensitivity. In essence, we are replacing 
spatial phase encoding with B1 phase encoding. An estimate of the B1 distribution in each projected pixel is then calculated using a 
convex optimization formulation. With this method, an estimate of the B1 distribution in a volume can be attained faster than by 
acquiring a 2D B1 map. Additionally, this method may resolve rapid B1 variations in space better than with a 2D image. We validate 
this method through simulations and in vivo at 3T. 
  
METHODS: BEAR acquires doubly refocused spin-echo images with phase that is sensitive to B1 variations using two HSn2 
adiabatic full-passage pulses. BEAR’s phase sensitivity to B1 can be tuned via the HSn refocusing pulse parameters by varying n, 
which determines the shape of the pulses, and δ, the ratio of the magnitude of the pulses (Fig. 1).  

Multiple successive projection measurements are acquired while varying δ and n2 to change the B1 sensitivity. Using the 
projection measurements and known B1 sensitivity, an estimate of the B1 distribution in the volume can be calculated. A given B1 
distribution in a volume can be binned into K bins, each representing a particular B1 range. If the fraction of spins in the volume with 
B1 values in bin k is represented by ck, then a projection measurement can be written as p = ∑k ck e

iΦk, where Φk represents the phase 
corresponding to B1,k, given the known sensitivity, and k = 1,2,…K. If J projections with different sensitivities are acquired, then each 
projection is pj = ∑k ck e

iΦj,k
 where j = 1,2,…J. In matrix form: p = Φc, with p a Jx1 vector containing the measured projections, Φ a 

JxK phase matrix, and c a Kx1 vector representing the unknown B1 distribution. To solve for c, a convex optimization formulation3 
with additional constraints can be set up as 

minC:    ∑hub(p−Φc) + λ1||D1c||2 + λ2||D2c||2,     subject to:    c ≥ 0 
restricting the solution to be nonnegative real, as desired. This formulation uses the Huber penalty function3 for robustness against 
outliers. Smoothing constraints have been included as finite difference matrices in the B1 direction (D1), and for adjacent pixels in the 
1D projection (D2). L-curve corners were used to find λ1,2 for each pixel, and the mean λ1,2 were used for optimization. For smoothing, 
the solution for each pixel used two immediately adjacent pixels.  

For both simulated and in vivo data, 11 B1 bins, and 11 sensitivities, uniformly distributed in the range of δ = [1,0.8], were used. 
The number of samples and range in δ are analogous to the number of Y phase 
encodes and ky excursion for 2D imaging. The B1 map used for the simulated data 
was of previously acquired in vivo 7T data. To compare actual and measured 
distributions, the Earth Mover’s Distance (EMD)4 metric is calculated for each 
projected pixel, which estimates the work needed to transform one distribution into 
another. A smaller EMD value indicates greater similarity between distributions.  
  
RESULTS: Fig. 1 shows a range of B1 sensitivities used in 
this study (not all sensitivities are shown). The convex 
optimization B1 distribution solution closely matches the actual 
B1 distribution for simulated data (Fig. 2b-d), with an average 
EMD of 0.0024 G·(relative counts). In vivo (Fig. 2f-h), there is 
more variation between the measured and actual distributions, 
with an average EMD of 0.0104 G·(relative counts). Simulated 
and in vivo scanned 2D B1 maps are shown in Fig. 2a,e for 
reference. For both datasets, errors in the histograms were 
concentrated near the actual B1 distributions of the 2D maps. 
  
DISCUSSION/CONCLUSION: We have demonstrated a 
new method that estimates the B1 distribution in a volume 
without acquiring 2D image data. By encoding the signal data 
in B1, we are able to use multiple measurements to calculate 
the B1 distribution. This method was validated in simulation 
and in vivo, with most of the histogram error concentrated 
along the B1 distribution. This suggests that errors are most 
likely due to misplaced counts in consecutive bins, with small 
errors in B1. The convex optimization formulation is a general 
approach that would allow for the estimation of more B1 bins 
than number of encodings, as well as the use of nonuniform B1 
binning. Compared to 2D B1 mapping methods, this new 
method may be useful to acquire a faster estimate of the B1 distribution, or to estimate a distribution where B1 is varying rapidly in 
space, such as near a conducting guidewire.                Acknowledgment: The authors thank Bob Dougherty for access to Stanford CNI’s 3T scanner.   
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Figure 1: Simulated phase 
as a function of B1 for δ= 
[0.8, 0.84, 0.88, 0.92, 0.96] 
n1=4 and n2=[4.255, 4.205, 
4.155, 4.102, 4.051] from 
top to bottom.  

Figure 2: a-d: Simulated and e-h: in vivo data and results. a,e:
Masked 2D B1 maps. b,f: Actual and c,g: convex optimization results
for the B1 distribution match visually, with more variation in vivo.
d,h: Earth Mover’s Distance between (b,f) and (c,g), with mean
distances of 0.0024 G·(relative counts) (simulated) and 0.0104
G·(relative counts) (in vivo). 
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