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Purpose: Current state-of-the-art MR-PET scanners enable simultaneous acquisition of PET and MR data. However, image reconstruction is usually performed 
separately and the results are only combined at the visualization stage. PET images are reconstructed using the Expectation Maximization (EM) [1] algorithm or one of 
its variants, whereas MR data are reconstructed using an inverse Fourier transform (conventional) or an iterative algorithm in cases like parallel imaging or compressed 
sensing. In this work we propose a new iterative joint reconstruction framework based on multi-sensor compressed sensing methods that exploits anatomical correlations 
between MR and PET using a joint sparsity constraint. The proposed method is tested in numerical simulations and in-vivo brain data acquired on an MR-PET scanner.  
 

Methods: Image Reconstruction: Our approach is motivated by the idea of joint sparsity based image 
reconstruction of data acquired with multiple sensors [2]. While MR and PET each provide unique and 
independent information, they share the same underlying anatomical features. In this way information 
about sharp tissue edges can be transferred from the MR to the PET images. However, it is critical that 
features that are visible in only one of the two modalities are neither transferred to the other one nor 
dampened by their absence in the second modality. By treating the two imaging modalities as additional 
dimensions of a single dataset, the proposed method reconstructs 4D data by solution of the following 
optimization problem: 
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In this equation xMR and xPET are the 3D image data sets, while k and f are the corresponding measured MR 
k-space data and PET raw data. E is the operator that maps between MR images and rawdata and also 
includes multiplication by coil sensitivities, i are voxel indices, Ψ is a transform to a domain where the 
images are sparse and λi and λMR are regularization parameters. EM is used to update the PET image 
during the iterations, A is the PET projection operator, n denotes EM iterations and N corrects for 
geometrical effects [1]. The forward operators also include the mapping of the two image volumes to the 
same resolution. In these experiments, the higher MR resolution was used. The joint sparsity term that is 
responsible for the exchange of anatomical information, is defined as: 
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In addition to the joint sparsity term, an individual sparsity term is included for the MR dataset in order to 
remove undersampling artifacts.  In order to avoid leakage of non-shared information from one modality 
to the other, we propose a spatially dependent regularization given by the difference of the signal intesities 
in each voxel i: di=| |Ψ(xi

MR)|- |Ψ(xi
PET)| |. The regularization parameters are then scaled down according 

to λi=λ/di. This ensures that in areas where the imaged signals do not match, no joint information is shared 
between the two modalities. Iterative soft thresholding is used to solve the optimization problem.  
 

Simulations: The proposed approach was first tested in simulations using the Shepp Logan phantom 
(128x128 image matrix). Additional structures representing lesions in the individual modalities were 
added to two images. For simplicity, the same resolution was used for both images. Afterwards simulated 
MR k-space data with a radial trajectory using 32 spokes and coil sensitivities from an 8-element head coil 
array were generated. Complex Gaussian noise was added to the complex k-space data. To simulate a PET 
acquisition, the image was forward projected to sinogram space and Poisson noise was added. The images were 
then reconstructed using regridding and sum of squares for MR and EM for PET, as well as with the proposed 
joint approach. The robustness of the joint approach against anatomical misalignment was tested by rotating the 
simulated PET image against the MR image by 30 degrees as well as shifting it down and to the right by 8 
pixels. Wavelets were used as the sparsifying transform for the individual MR sparsity while the joint sparsity 
term was evaluated directly in image space (Ψ being the identity matrix in this case).  
 

Data acquisition: MR data were acquired on a clinical 3T MR-PET System (Siemens Biograph mMR) using a 
conventional 12-element head coil array in CP mode. A 3D gradient echo sequence with stack-of-stars golden 
angle radial sampling was implemented with the following sequence parameters: TR=3.78ms, TE=1.89ms, 
FA=10°, 87 radial spokes per slice, each with 512 samples in the readout direction including 2-fold 
oversampling, matrix 256x256, FOV 220*220mm2 and BW=592Hz/pixel. 58 slices were acquired in k-space 
with a slice thickness of 1.2mm and 6/8 partial Fourier in slice direction, which were then interpolated to 160 
slices with zero filling. Images were reconstructed with regridding/EM and the joint reconstruction. 
 

Results: Results of the simulations are shown in Figure 1. Improved image quality in terms of noise reduction, 
and suppression of aliasing artifacts in the case of the MR images can be observed. Neither information about 
misaligned edges nor information from structures that are only present in one modality, are transferred to the 
other image. This can also be observed in the spatially varying maps of the regularization parameter. In these 
plots bright values correspond to the originally defined regularization, and it can be observed that the value of 
the parameter is decreased whenever an image feature is only present in one of the two modalities. These 
findings are confirmed in the in-vivo results in Figure 2, where spatial resolution of the PET image was 
significantly improved without degrading the SNR. 
 

Conclusions: Joint MR-PET reconstruction improves resolution in the PET images in regions where they are 
aligned with the corresponding MR image. This is in line with findings in studies using MR-based anatomical 
priors for PET reconstruction [3]. In regions that are highlighted in PET but without distinctive contrast in MR, e.g. next to the ventricles, the PET signal information is 
not improved, but also not influenced falsely by the lack of MR contrast. The proposed framework can also deal with undersampled MR data, which are improved in 
comparison to the gridding reconstruction mainly due to the presence of the individual sparsity term. However, it can also be observed that the MR images are not 
perturbed by the lower SNR and resolution of the PET data. The availability of simultaneously-acquired MR and PET data will also enable motion correction and the 
exploitation of dynamic correlations to be incorporated into the joint reconstruction framework, which promises to further improve image quality and enhance the 
information content of multimodality studies. 
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Figure 1: Simulation results for perfect alignment and 
misalignment between two images: Original phantoms, 
(first column), Regridding and EM reconstructions, the 
proposed joint reconstruction and the map of the 
spatially dependent regularization parameter λi. Notice 
the reduced values of λi at the positions of the additional 
lesions in the PET image, indicated by arrows. 

Figure 2: Regridding and EM reconstructions 
(left) and the proposed joint reconstruction 
(right) for the in-vivo brain measurements. Top: 
MR images. Bottom: PET images. 
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