

Assessment of Macromolecular and Metabolic Alterations during Normal Brain Aging in the Dark Agouti Rat using ^1H MRS at 17.2 Tesla

Alfredo Liubomir Lopez Kolkovsky¹, Boucif Djemai¹, and Fawzi Boumezbeur¹
¹CEA/Saclay/Neurospin, Commissariat a l'Energie Atomique, Gif-sur-Yvette, Essonne, France

Introduction

Normal brain aging is usually associated with a decline in brain function. Yet, the neural basis of age-related cognitive dysfunction in normal brain aging remains to be entirely elucidated. Recently, we established several metabolic alterations that occur during normal human aging using *in vivo* ^1H and ^{13}C MRS¹. In this study, we sought to explore further these metabolic alterations in the brain of healthy rats with *in vivo* short echo time ^1H MRS at 17.2 T.

Methods

MRS Acquisitions. For this study, we chose to use Dark Agouti (DA) rats because of their small weight at advanced age. Two cohorts were examined: "Young" rats ($n=6$, 1 month old, weight 220 ± 20 g) and "Elderly" rats ($n=4$, 16 months old, weight 330 ± 30 g). Animals were anesthetized using isoflurane (1-2% in pure O_2). Body temperature was monitored and maintained at $37^\circ \pm 0.5^\circ$. All Experiments were performed on a 17.2 T/26 cm Bruker BioSpec MRI scanner (Ettlingen, Germany) using a home-made 20 mm diameter single-loop surface coil. Anatomical images were acquired for positioning using a RARE sequence. ^1H MR Spectra were acquired with a LASER² sequence (TE/TR=28/5000ms, 128 averages, 2048 points) from a 50 μL ($5 \times 5 \times 2 \text{ mm}^3$) volume containing mostly cerebral cortex and contributions from the corpus callosum and the hippocampus. For local B_0 field homogenization mapshim and local shim Bruker routines were employed. Typical water linewidth for Young rats was 21 ± 3 Hz and for Elderly rats 24 ± 3 Hz. Water suppression was done using a WET module³ with numerically optimized flip angles and delays. Metabolite-nulled spectra were acquired at TE=16.5 ms using a double-inversion scheme (TI1/TI2/TR= 2600/600/5000ms).

Data Analysis. After removal of the residual water signal using the HLSVD³ algorithm, MR spectra were analyzed using LCModel⁵ and a set of simulated spectra. The signal of macromolecules (MM) was parameterized⁶ and implemented in LCModel as 4 groups of MM resonances in order to fit the experimental metabolite-nulled spectra (Fig.1). Absolute concentrations were derived by using the non-suppressed water signal as an internal reference of concentration and by correcting for T_1 and T_2 relaxation effects. Statistical significance between Young and Elderly rats was established using a bilateral Welch's t-test.

Results and Discussion

Figure 1 shows examples of ^1H MR spectra acquired in Young and Elderly rats. Figure 2 illustrates the difference in concentrations calculated for the major brain metabolites and MM resonance groups in Young and Elderly rats. Notably, one can observe a significant decrease in Glu+Gln (-6%) and GABA (-23%) levels as well as an increase of glial marker Ins (+24%) and tCho levels (+30%). Also, an increase of MM concentrations is detected in Elderly (from + 8 to 16 %). Considering that a LASER sequence was used for localization, it is unlikely that these differences in MM levels are due to contamination from extracranial lipids.

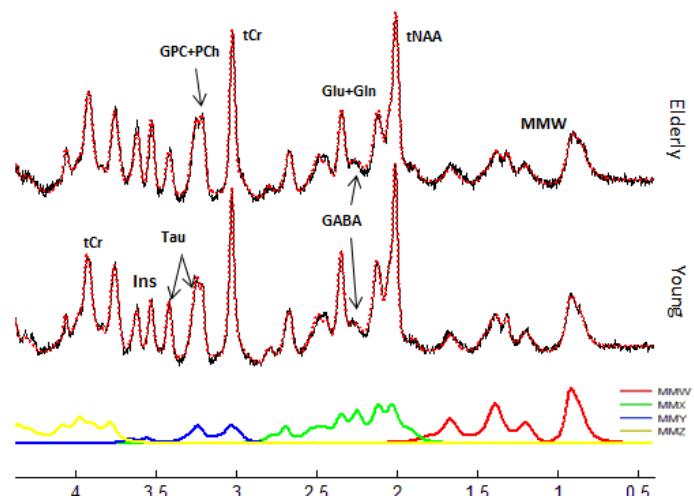


Fig.1 Metabolic profile of Elderly (top) and Young (middle) DA rats. The 4 groups of MM resonances are presented (bottom). LCModel fits are in red.

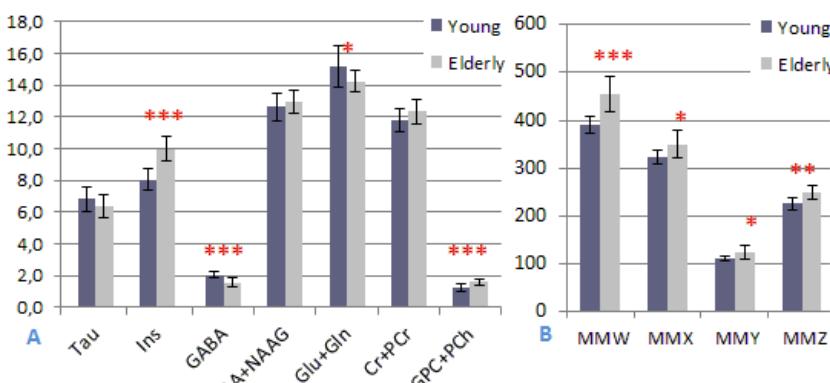


Fig.2. A Concentrations of major brain metabolites and B MMs for Young and Elderly rats. Metabolic and MM concentrations are expressed respectively in mmol/L and mmol/L of ^1H . Statistical significance is indicated using * $P < .05$, ** $P < .005$ and *** $P < .0005$.

Conclusion

The decrease of neurotransmitter levels is consistent with a moderate decline in the neuronal function during normal brain aging. Whereas, the increase of Ins and tCho levels in addition to the macromolecule signals indicate a chronic low-level glial activation and neuroinflammation consistent with our previous observations in humans¹.

References

1. Boumezbeur F et al., J Cereb Blood Flow Metab. 2010 30(1):211-21.
2. Garwood M, DelaBarre L. J Magn Reson 2001;153: 155-177.
3. Ogg, R et al. JMR 1994 Series B 104, 1-10
4. Pijnappel WWF. et al., JMR 1992;97:122-134.
5. Provencher SW., MRM 1993; 30(6):672-679.
6. Seeger U. et al., MRM 1993;49(1):19-28.