Is R1 of Lipids related to pO2? Lessons from two tumor models

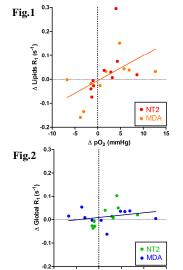
Florence Colliez¹, Marie-Aline Neveu¹, Julie Magat¹, Thanh Trang Cao Pham¹, Bernard Gallez¹, and Bénédicte F Jordan¹ Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, University of Louvain, Brussels, Belgium

Target audience: MR scientists who are interested in oncology and tumor hypoxia mapping

Introduction: Tumor hypoxia is acknowledged as a major factor of resistance of solid tumors to treatment. Improving tumor oxygenation at the time of treatment could lead to an improved response to both chemotherapy and radiotherapy¹. Variations in T_1 and T_2* are potentially valuable MRI tools to follow changes in tumor oxygenation. T_2* is sensitive to the relative Hb/HbO₂ ratio in vessel², while T_1 change is sensitive to dissolved oxygen which acts as a T_1 -shortening paramagnetic contrast agent³. The aim of the current work is to investigate the quantitative aspect of a new oxygen mapping method: MOBILE (Mapping of Oxygen By Lipids relaxation Enhancement). This non-invasive method is based on the changes in the relaxation properties of the tissue lipids by exploiting the higher solubility property of oxygen in lipids than in water⁴. For this purpose, two tumor models were submitted to (i) hyperoxic challenges induced by carbogen breathing and (ii) hypoxic challenges induced by Combetastatin A-4 Phosphate, a vascular disrupting agent (VDA) known to induce hypoxia within 3 hours⁵. Actual pO₂ was obtained by EPR oximetry. We compared sensitivities of the MOBILE technique with the classical 'oxygen enhanced MRI' sensitivity that measures global T_1 mainly influenced by water protons.

Methods:

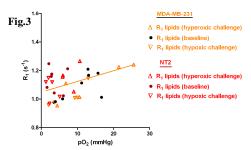
Tumor models: Mammary NT2 and human MDA-MB-231 tumor cells were inoculated at orthotopic site in FVB/Nrj and NMRI nude mice respectively (n=5 for each tumor model).

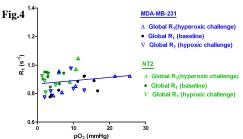

MR imaging: Experiments were performed with a 11.7T (Bruker, Biospec) using a surface coil cryoprobe. 'Oxygen enhanced MRI': A segmented IR FISP (Inversion-Recovery Fast Imaging with Steady state Precession) sequence (SSFP FID mode) was used to acquire parametric images of T₁ relaxation time ('oxygen enhanced MRI'). Acquisition parameters were TR/TE/FA/BW/matrix = 4 ms/1.2ms/5°/100kHz/64x64, 4 segments, and a total acquisition time of 1min20s. 'MOBILE': The difference in Hertz between water and lipid peaks was evaluated on a single pulse spectrum. These offsets were then used as an imaging frequency offset in the same IR FISP protocol and the water signal was spoiled.

EPR experiments: A 1.1 GHZ in vivo L-band EPR Magnettech system was used 24h after injection of a paramagnetic oxygen reporter probe.

Hyperoxic challenge: A set of 3 images of each type (Global T_1 and Lipids T_1) were acquired at baseline and 10 minutes after a switch to carbogen breathing. The same challenge was repeated 3hours later to achieve actual pO₂ by EPR oximetry.

Hypoxic challenge: A set of 3 images of each type (Global T₁ and Lipids T₁) were acquired at baseline and 3hours after CA4P injection (100mg/kg).


Results: Parametric maps of Lipids R1 were provided for each tumor before and after challenges.



 Δ pO₂ (mmHg)

A significant linear regression has been established between variations of Lipids R_1 in regard to variations of pO₂ (Y = 00.015051±0.004181 X + 0.005921±0.0235; p=0.0217)(Fig. 1). However, no correlation was statistically demonstrated despite a trend between variations of Global R_1 and variations of pO₂ (Y = 0.001995±0.001823 X - 0.008542±0.008872; p=0.2882)(Fig. 2).

A significant linear regression was demonstrated between actual pO_2 and mean Lipids R_1 calculated for each tumor (Y= 0.007493 \pm 0.003249 X + 1.048 \pm 0.03150 ; p=0.0275)(Fig.3) However, we observed no significant linear regression between actual pO_2 and Global R_1 even if a slightly trend was observed (Y= 0.002283 \pm 0.001970 X + 0.8656 \pm 0.01910 ; p=0,2548).(Fig.4)

<u>Discussion & Conclusion</u>: The quantitative aspect of MOBILE has been demonstrated. Actual pO_2 was measured in two tumor models (NT2 and MDA-MB-231 tumors) by EPR oximetry and significantly correlated to mean values of Lipids R_1 obtained with MOBILE at baseline and after both hyperoxic and hypoxic challenges, induced respectively by carbogen breathing and CA4P administration.

References: **1.**Kaanders et al, *Lancet Oncol* 2002, 3, 728-737 **2.**Baudelet et al, *Magn Reson Med* 2002, 48, 980-986 **3.** O'Connor et al, *Int J Radiat Oncol Biol Phys* 2009, 75, 1209-1215 **4.** Jordan BF, et al. Magn Reson Med. 2013; 70:732–744 **5.** Iversen AB et al., *Acta Oncol.* 2013 Oct;52(7):1320-6 **6.** O'Connor JP et al., *Int J Radiat Oncol Biol Phys* 2009; 75(4):1209-15