MR-GUIDED SCLEROTHERAPY OF LOW-FLOW VASCULAR MALFORMATIONS USING T_2 -WEIGHTED INTERRUPTED BSSFP (T_2 W-ISSFP): COMPARISON OF PULSE SEQUENCES FOR VISUALIZATION AND NEEDLE GUIDANCE

Di Xu¹, Daniel A. Herzka¹, Wesley D. Gilson², Elliot R. McVeigh¹, Jonathan S. Lewin³, and Clifford R. Weiss³

¹Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, United States, ²Imaging & Computer Vision, Corporate Technology, Siemens Corporation, Baltimore, MD, United States, ³Department of Radiology, Johns Hopkins School of Medicine, Baltimore, MD, United States

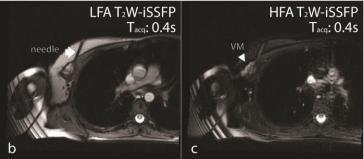
BACKGROUND Venous malformations (VMs) and lymphatic malformations (LMs) are congenital lesions that affect both children

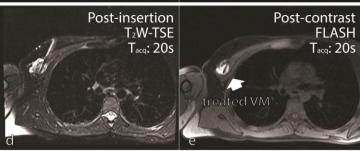
and adults. T₂-weighted fat suppressed turbo spin echo imaging (T₂W

-TSE) is the gold standard for diagnostic imaging of VMs and LMs, and these lesions are typically treated percutaneously using ultrasound (US) for needle insertion and fluoroscopy for assessment of flow and draining veins. However, certain lesions cannot be accessed using US. Typically these include lesions that are deep within the body, that lie beneath scar, or are located in or behind bone. Realtime MR-guided intervention serves as an alternative. However, conventional real-time sequences are limited; they are either slow, with blurry, distorted edges (HASTE)² or demonstrate ambiguous malformation delineation because of poor T₂-weighting (bSSFP)³.

PURPOSE To clinically deploy a new technique specifically designed for the visualization of VMs and LMs during real-time image guidance during intervention: T_2 -weighted interrupted bSSFP (T_2 W-iSSFP).

METHODS Sequence design: T₂W-iSSFP is a variable flip angle interrupted bSSFP sequence. T₂ contrast and fat suppression are based on T₂-TIDE⁴ and FS-TIDE⁵. A prolonged TR combines T2-TIDE and FS-TIDE, hence achieves simultaneous T₂ contrast and fat suppression. ⁶ T₂ weighting and fat suppression are customizable with higher/lower flip angles (HFA/LFA) in the bSSFP train, respectively. *Patient testing:* To compare the malformation visualization, patients (N=8) were scanned by HASTE, bSSFP and T2W-iSSFP; TSE was used as the reference of lesion detection. Evaluation imaging was performed as preprocedural imaging, with IRB approval. To evaluate the sequence's performance in patients, CNR efficiency (CNR of VMs vs. muscle divided by the square root of acquisition time) and image sharpness (the reciprocal of mean edge width of needles in the images of swine), were used. Further, MR-guided percutaneous needle placement procedures were carried out using T₂W-iSSFP on swine (N=3) and on VM patients (N=8). All patients had undergone prior percutaneous sclerotherapy procedures with an actual or predicted inability to access their malformations using US. **RESULTS** Using TSE as the reference sequence, 14 VMs were detected. The lesion detection rates are 14/14


RESULTS Using TSE as the reference sequence, 14 VMs were detected. The lesion detection rates are 14/14 (HASTE), 7/14 (bSSFP) and 14/14 (T₂W-iSSFP). The evaluation of the three real-time sequences are shown in Table 1. All MR guided sclerotherapy procedures using T₂W-iSSFP were successful. Specifically, all needles (14 punctures) were placed in the targeted lesions, which was confirmed by post-insertion T₂W-TSE and post-contrast FLASH. A successful MR guided VM embolization is presented in Fig 1.


CONCLUSION T₂W-iSSFP provides effective lesion

identification and needle visualization. Using this sequence in MR-guided sclerotherapy, we successfully treated eight patients, which are all difficult cases. This sequence has potential use in other MR-guided procedures where heavily T_2 -weighted real-time images are needed, such as liver biopsy, nephrostomy, and biliary drainage.

REFERENCES 1. Legiehn et al, Sem. Inter. Rad. 2010; 2. Ali et al, IMRI 2012; 3. Lewin et al, Radiology 1999; 4. Paul et al, MRM 2006; 5. Paul et al, MRM 2006; 6. Xu et al, ISMRM 2012; 7. Lai et al, MRM 2008.

Fig 1. (a) Image depicting scanner suite layout as used during a VM embolization procedure. This 33 y.o. woman had a lesion in the right lateral chest wall adjacent to axilla and was referred for MR guidance due to a failure to locate the lesion using US. (b) LFA and (c) HFA T₂W-iSSFP images of real-time needle guidance are shown. Specifically, LFA T₂W-iSSFP permits superior needle and soft tissue delineation (arrow) while HFA T₂W-iSSFP depicts the VM (arrowhead). (d) Post-insertion T₂W-TSE and post-contrast 3D Fast Low Angle SHot (FLASH) demonstrate that the treated lesion was filled with gadolinium doped sclerosant successfully (3% sodium tetradecyl sulfate).

Table 1. Evaluation of image contrast, sharpness, speed, and SAR.

Metrics	HASTE	bSSFP	T ₂ W-iSSFP
CNR efficiency (a.u.)	797±66	281±44	860±29
Image sharpness (mm ⁻¹)	0.21±0.06	0.48 ± 0.02	0.49±0.03
Time per slice (second)	1-2	0.3-0.6	0.3-0.7
SAR (W/kg)	1.6±0.1	1.1±0.3	1.3±0.1