Combined use of MR-HIFU and intra-arterial embolization to reduce heat sink: quantification in a porcine liver model

Joost W. Wijlemans1, Mario Ries2, Martijn de Greef2, Gerald Schubert3, Max Köhler3, Mika Ylihautala3, Lambertus W. Bartels2, Christ T.W. Moonen2, and Maurice A.J. van den Bosch1

1Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands, 2Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands, 3Philips Medical Systems MR, Vantaa, Finland

Purpose

MR-guided high intensity focused ultrasound (MR-HIFU) is a promising technique for image guided, non-invasive tumor ablation. One challenge for MR-HIFU of liver tumors is the high perfusion rate in the liver, which very efficiently removes heat from liver tissue. To overcome this challenge, several authors have proposed the combined use of intra-arterial embolization and HIFU ablation. The embolization will reduce the perfusion in the area of the tumor, which potentially renders the HIFU ablation more effective. However, embolization has only been used in combination with ultrasound guided HIFU (i.e. without temperature measurements). For this reason, the magnitude of this synergistic effect has never been experimentally quantified. In this study, we used proton resonance frequency shift (PRFS) temperature mapping to quantify the role of perfusion on temperature development during MR-HIFU ablation in a porcine liver model.

Materials and methods

After approval by our institution’s animal experimental committee, general anesthesia was induced in one Dalland land pig and an intra-arterial catheter was positioned in the proper hepatic artery under fluoroscopy guidance. The animal was then positioned on a clinical 1.5-T MR-HIFU therapy system (Sonalleve, Philips Healthcare, Vantaa, Finland). A T2-weighted 3D TSE scan and T1-weighted high resolution FFE scan were made for treatment planning. Six volumetric treatment cells (4 mm diameter each) were planned in the middle liver lobe. Medium-high (200 – 300 W) acoustic power was used in order to heat (<55°C) but not necrotize, since this would change the attenuation properties of the tissue. After sonication of these cells, polyvinyl alcohol (PVA) particles were injected through the intra-arterial catheter and a dynamic contrast-enhanced scan was made to confirm complete shutdown of the liver perfusion. Subsequently, the six treatment cells were re-sonicated. Temperature development on the PRFS temperature map was analyzed.

Results

The peak temperature elevation after embolization was significantly higher than the peak temperature elevation in the perfused liver (p = 0.01, mean ± Sd: 22.6 ± 5.3 vs. 13.7 ± 3.5 °C). The mean ratio between peak temperature elevation before and after embolization was 1.74 ± 0.55. PRFS thermometry images of ablation after embolization showed a clear concentric diffusion of heat from the focal point, as opposed to thermometry images in the perfused liver.

Discussion

Our results confirm the expected synergistic effect of intra-arterial embolization and HIFU. Peak temperatures were on average 1.7 times higher. This indicates that the combined use of intra-arterial embolization and MR-HIFU allows for ablation of larger tissue volumes with similar acoustic power and within the same time frame. In addition, embolization is known to be an effective anti-cancer therapy in itself, specifically in the (highly perfused) outer rim of the tumor. Combination treatment with these minimally invasive and non-invasive treatment modalities could be an attractive treatment option for liver cancer patients in the palliative phase.

Acknowledgement

This study was performed within the framework of CTMM, the Center for Translational Molecular Medicine, project VOLTA (grant 05T-201).