Human bile phosphatidylcholine contributes to 31P MRS hepatic signal at 2.06 ppm.

Marek Chmelík1, Ladislav Valkovic1,2, Peter Wolf2, Wolfgang Bogner1,4, Martin Gajdošič1, Stephan Gruber1, Michael Krebs1, Siegfried Trattnig1, and Martin Krššák1,3

1MR Centre of Excellence, Department of Radiology, Medical University of Vienna, Vienna, Austria, 2Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia, 3Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria, 4Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General, Boston, MA, United States

Purpose/Introduction

31P-MRS provides unique information on hepatic energy metabolism in vivo. Alternations in phosphodiester (PDE) signals have been associated with alcoholic, viral and cholestatic etiologies [1]. Main contributors to PDE signal are glycerophosphocholine (GPC) and glycerophosphoethanolamine (GPE). An additional resonance at 2.06 ppm assigned to phosphoenolpyruvate (PEP) [2,3] can be separated from PDE resonances at 3T with proton decoupling [3,4] and at 7T without proton decoupling [5]. Contribution of phosphatidylcholine (PtdC, part of lecithin) which is dominant metabolite in bile [6] to this signal is under discussion [4,7].

The purpose of this study was to assess possible contribution of PtdC to signal at 2.06 ppm by in vitro measurements of test object solutions (PEP and PtdC) and by 31P 3D MRSI in vivo measurements including signal from liver and gall bladder.

Subjects and Methods

4 cylindrical tubes filled with inorganic phosphate (Pi), phosphocreatine (PCr), PEP and PtdC were placed in the plastic box filed with water. Single shot non-localized FID acquisition (Fig.1 middle-top) and 2D CSI (16x16x16, TR 4s, TA 20min) phantom data (Fig.1) were acquired on a 7T MR system (Siemens) using double-tuned surface coil (1H/31P) (RAPID Biomedical GmbH, Rimpar, Germany), with a diameter of 10 cm.

In vivo hepatic 31P 3D MRSI data acquired at 3T (n=30, 13x13x13, TR 1s, TA 34min)[8] and 7T (n=5, 12x12x12, TR 1.5s, TA=21min)[5] were retrospectively analyzed for the presence of gall bladder on localizer images (Fig. 2 middle). PDE region of representative spectra from gall bladder and from liver tissue were fitted in jMRUI.

Results

Based on in vitro phantom measurement, following chemical shifts were observed: 0ppm - PCr, 3.16 ppm - Pi, -1.32ppm - PEP, 2.13ppm – PtdC (Fig.1). These shifts are in good agreement with previous in vitro results [7,9] and indicates that rather PtdC then PEP resonates at 2ppm.

10 of 35 in vivo data sets included signals from gall bladder. PDE signal was 3.9 fold higher (p= 0.007) in gall bladder spectra (PDE 142.6 ± 34.1 a.u.) than in liver tissue (PDE 36.3 ± 11.8 a.u.).

7T data (Fig.2) allowed good separation of PDE components with clearly visible dominant signal at 2.06ppm (Fig. 2 right).

Discussion/Conclusion

Based on both phantom and in vivo data we can suggest phosphatydicholline (lecithin) from bile rather than phosphoenolpyruvate contributes to 31P MR hepatic signal at 2.06ppm. Further studies should investigate potential use of this signal for metabolic studies of the liver and bile ducts.

Further-on, findings of altered PDE signals, especially when not idealy resolved, should take into account possible MRS contamination by hepatic bile or by gall bladder signals.

References

[7] Ijare et al. ISMRM 2011

Fig.1 Phantom measurement including 4 samples filled with Pi, PCr,PEP and PtdC

Non-localized spectrum is displayed middle-top and representative spectra left and right.

Fig.2 Example of 7T in vivo 31P 3D MRSI measurement including both liver and gall bladder data. Note strong signal of PtdC at 2ppm in gall blader and its surrounding (right).