An extra-mitochondrial domain rich in carbonic anhydrase activity improves myocardial energetics

Marie Allen Schroeder1, Mohammad Ali2, Alzbeta Hulikova1, Claudius T. Supuran3, Kieran Clarke4, Richard D Vaughan-Jones5, Damian J Tyler6, and Pawel Swietach1

1Physiology, Anatomy and Genetics, University of Oxford, Oxford, Oxon, United Kingdom, 2University of Florence, Florence, Italy

Introduction

CO2 is produced in vast quantities by cardiac mitochondria and efficient means of its venting are required to support metabolism. A range of metabolic and physiological adaptations for improving energy provision has been identified, yet little is known about mechanisms for improving CO2 venting. Carbonic anhydrases (CAs), expressed at various sites in ventricular cardiomyocytes, may affect mitochondrial CO2 clearance by catalyzing CO2 hydration (to H+ and HCO3−) and changing trans-membrane [CO2]-gradients for diffusion. In this study, we investigated the hypothesis that mitochondrial CO2 venting is facilitated by concentrating CA activity near (but not within) mitochondria, and that this distribution improves myocardial energetics.

Methods and Results

Using fluorescent dyes to measure pH-changes arising from the intracellular hydration of CO2 introduced from outside cells, overall CA activity in the cytoplasm of isolated ventricular myocytes was found to be modest (2.7-fold above spontaneous kinetics). Experiments on isolated ventricular mitochondria demonstrated negligible intra-mitochondrial CA activity. In vivo cardiac CA activity was also investigated by hyperpolarized 13C magnetic resonance spectroscopy (MRS) from the rate of production of H13CO3 from 13CO2, released by mitochondrial metabolism of hyperpolarized [1-13C]pyruvate. CA activity measured upon [1-13C]pyruvate infusion was 4-fold higher than the cytoplasm-averaged value (11-fold above spontaneous kinetics, Fig. A). However, after the 13CO2 resonance was repeatedly quenched with a saturation pulse to allow CO2 to dissipate away from its mitochondrial source, the apparent CA activity decreased (Fig. B). A fluorescent CA-ligand co-localized with the mitochondrial marker TMRE, indicating that mitochondria are near a CA-rich domain. Based on immunoreactivity, this domain may comprise of CAXIV and, to a lesser extent CAII, which remained closely associated with purified mitochondria. Extra-mitochondrial CA activity raised matrix pH (~0.1 units; flow-cytometry of isolated mitochondria, Fig. D) and improved cardiac energetics indexed by increased phosphocreatine-to-ATP (PCr/ATP) ratio and decreased [ADP]31P MRS of intact hearts, Figs. E&F).

Discussion

These data provide evidence for a functional domain of high CA activity around mitochondria that facilitates CO2 venting, thus supporting the activity of the heart’s mitochondria and improving energetics by means of streamlined waste removal. Aberrant CA activity or distribution may reduce the heart’s energetic efficiency, an important finding as reduced PCr/ATP is characteristic of heart failure and correlates with the New York Heart Association classes of heart disease and predicted prognosis. Certain cardiac disease states involve altered CA expression levels, and the effect that this has on the state of their extra-mitochondrial CA-rich domain and energetics warrants further investigation.

References


Acknowledgements

This study was supported by the Wellcome Trust, the Royal Society, the British Heart Foundation and GE Healthcare.

A) (i) Time course of 13C-labelled pyruvate, CO2 and HCO3− measured by MRS of rats infused with hyperpolarized [1-13C]pyruvate (N=8). (ii) Experiment repeated on rats pre-treated with acetazolamide (ATZ, a CA inhibitor), 15 min before infusion of [1-13C]pyruvate (N=6). Continuous traces show the best-fit model simulation of the data. B) Experimental protocol of A repeated, but with the H13CO3− signal quenched every 20 sec to measure 13CO2 hydration rate as 13CO2 diffused away from the mitochondria. C) Apparent CA activity was highest when measured near mitochondria. D) Relationship between mitochondrial matrix pH and extra-mitochondrial CA activity. Best-fit Hill plot (Km=0.4 nM CAII). E) Cardiac energetics measured in Langendorff-perfused hearts using 31P MRS under baseline conditions, during Ca-stress and upon recovery. ATZ reduced PCr/ATP ratio at baseline, and increased F) ADP/ATP ratio.