Frequency band-selective spiral CSI: application to imaging cardiac metabolism with hyperpolarized [2-13C]pyruvate

Sonal Josan 1,2, Ralph Hud, 1 Yi-Fen Yen 1, Adolf Plefferbaumer 1,4, Daniel Spielman 2 and Dirk Mayer 1,2

1 SRI International, Menlo Park, CA, United States, 2 Radiology, Stanford University, Stanford, CA, United States, 3 GE Healthcare, 4 Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States

Introduction

Spectroscopic imaging with hyperpolarized 13C substrates has been widely used to measure metabolic processes in real time in vivo. The most widely used substrate, [1-13C]pyruvate (Pyr), allows the assessment of pyruvate dehydrogenase (PDH) flux, which converts pyruvate to acetyl-CoA releasing the 13C label as 13CO2/Unt-Bicarbonate. There has also been growing interest in using hyperpolarized [2-13C]Pyr, to follow the 13C label into downstream metabolic products including [5-13C]glutamate (Glu), which is in fast exchange with α-ketoglutarate in the tricarboxylic acid (TCA) cycle, [1-13C]citrate (Cit), [1-13C]acetylecaminite (ALCAR) and [1,3-13C]acetocacete (Aca) 4,5, indicating incorporation of acetyl-CoA into different metabolic pathways. Previous studies with hyperpolarized [2-13C]Pyr and [1,2-13C]Pyr 1,4-5 used a surface coil for localization, obtaining spectra from the entire sensitive volume. Chemical shift imaging (CSI) with [2-13C]Pyr is challenging given the wide spectral dispersion of the resonances, e.g. ~150 ppm from [2-13C]alanine (Ala) to [2-13C]Pyr, i.e. ~4800 Hz at 3T. Hence, a slice-selective excitation 4 suffers from severe chemical shift displacement artifact. This work uses a spectrally selective excitation to perform 3D CSI of frequency sub-bands containing metabolites of interest. The frequency sub-band from 170-185 ppm containing Glu, Cit, ALCAR, Aca along with [1-13C]Pyr is of particular interest. Dynamic data were acquired alternately from multiple sub-bands in vivo in rat heart.

Methods

All measurements were performed on a GE 3T MR scanner with a high-performance insert gradient coil (500 mT/m, 1865 mT/m/ms) using a custom-built 13C transmit/receive surface coil (dia=28 mm) placed over the heart. Three rats were injected i.v. with approximately 3 ml of 80-mM solution of [2-13C]Pyr, which was hyperpolarized using HyperSense (Oxford Instruments, UK). Dichloroacetate (DCA) infusion (150 mg/kg) was administered i.v. prior to Pyr injection to stimulate PDH activity and allow Aca detection 1,2. A spatially non-selective RF pulse was used (4-ms long, 10° flip angle, passband=190 Hz with 1% ripple). A temporally non-selective RF pulse was used (4-ms long, 10° flip angle, passband=190 Hz with 1% ripple).

A spatially non-selective RF pulse was used (4-ms long, 10° flip angle, passband=190 Hz with 1% ripple). The spectral profile is shown in Fig. 1. With the passband centered approximately midway between Glu and [1-13C]Pyr, passband (referred to as Glu band hereon) magnitude at Glu and [13C]Pyr resonances was 90% and [2-13C]Pyr signal was suppressed (ripple ~10° at 968 Hz from passband center). Dynamic 3D 13C data were acquired with FOV=80×80×60 mm3, 5×5×5 mm3 nominal resolution, 12 z-phase-encoding steps, 2 x-y spiral interleaves, spectral width=607 Hz, 64 spectral points, Tacc=2.8s. Imaging started at the same time as Pyr injection. 24 time-points were acquired every 2.8s with the RF passband alternately placed at Glu and [2-13C]Pyr bands (or Glu and [2-13C]lactate (Lac) bands) for successive acquisitions. For the Lac band, the transmit frequency was centered on the down-field peak of the doublet which led to <1% ripple at the Ala doublet to avoid signal contamination from Ala into Lac given the 607 Hz spectral width.

Results and Discussion

Figure 2 shows representative time-averaged 13C metabolic maps of [2-13C]Pyr, Glu, ALCAR, Aca and Lac from a slice through the heart and superimposed onto 1H SPGR images. The Lac image is from a separate injection. The spectrum for the Glu band is shown in Fig. 3 along with metabolite time-courses, both from an ROI in the heart. All results were acquired 15 min post-DCA except Lac, which was 2 h post-DCA.

Signal from [13C]Pyr (at 1% natural abundance) in the Glu band may be sufficient to provide an estimate of the substrate signal. All 3 sub-bands were not acquired in one dataset as interleaving multiple sub-band acquisitions would lower temporal resolution. While the current implementation performs CSI on all spectral sub-bands, Pyr and Lac can be acquired using imaging rather than a spectroscopic readout to reduce scan time. Given high inflow in heart and limited excitation profile of the surface coil, a 10° flip angle with 24 excitations/volume encoding steps, 2 x-y spiral interleaves, spectral width=607 Hz, 64 spectral points, Tacc=2.8s. Imaging started at the same time as Pyr injection. 24 time-points were acquired every 2.8s with the RF passband alternately placed at Glu and [2-13C]Pyr bands (or Glu and [2-13C]lactate (Lac) bands) for successive acquisitions. For the Lac band, the transmit frequency was centered on the down-field peak of the doublet which led to <1% ripple at the Ala doublet to avoid signal contamination from Ala into Lac given the 607 Hz spectral width.

Figure 1: Spectral profile of the RF pulse. Lines 1 and 2 indicate chemical shifts of [13C]Pyr and Glu in the passband with ALCAR, Aca and Cit located between them. Signal from [12C]Pyr (line 3) is suppressed. Lines 4 and 5 mark [13C]Lac and [13C]Ala respectively.

Figure 2: Time-averaged 13C metabolic maps of a slice through the heart from a 3D dataset.

Figure 3: (a) Time-averaged spectrum showing Glu, Aca, ALCAR and natural abundance [13C]Pyr doublet. Line 1 shows chemical shift of Cit, though it did not have sufficient SNR here. Line 2 indicates [12C]Pyr signal excited by RF stopband ripples aliased into Glu band. Baseline roll in spectrum is from linear phase correction. (b) Metabolite signal time-courses from heart ROI. Lac was acquired in a separate injection. SNR of Glu and Aca were insufficient to plot time-courses.

Acknowledgements: NIH EB009070, AA05965, EB015891, AA018681, AA13521-INIA
