Comparison of Tumor Perfusion Measured by Hyperpolarized 13C Urea with DCE MR Imaging Prior to and Following Radiation Therapy

Vickie Zhang1,2, Robert Bok1, Jessie Lee2, Subramaniam Sukumar3, Adam Cunha1, I-Chow Hsu1, Jean Pouliot1, Daniel Vigneron1,2, and John Kurhanewicz1,2
1Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, United States, 2Graduate Program in Bioengineering, University of California, San Francisco & University of California, Berkeley, Berkeley, California, United States, 3Department of Radiation Oncology, University of California, San Francisco, San Francisco, California, United States

Purpose: Dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) has shown great clinical potential for assessing prostate cancer presence and aggressiveness prior to and after radiation therapy (1). Metabolically-inactive hyperpolarized (HP) urea is a nontoxic, endogenous agent that enables MR imaging of perfusion based on a direct signal source that is background-free. Co-polarization of 13C pyruvate and urea also allows the simultaneous assessment of tumor perfusion and metabolism in a single MR acquisition (2,3). However, whether hyperpolarized 13C urea provides the same information as DCE MRI remains to be answered. To address this question, this study investigated tumor perfusion prior to therapy and following radiation therapy in a transgenic murine model of prostate cancer using both HP 13C urea and DCE MRI.

Methods: Four transgenic TRAMP mouse prostate tumors (size = 2.1±1.1cc) were scanned at pre-treatment, and 1, 4, and 8 days after radiation therapy. Animals were treated with HDR brachytherapy (Ir-192), which resulted in a dose distribution within the tumor where ventral side of the tumor exposed to a higher dose at 14 Gy, and dorsal side exposed to a lower dose of 4 Gy. Imaging studies were performed on a 14T, 600WB micro-imaging spectrometer (Varian Inc.) [1-13C]pyruvic acid and 13C urea were co-hyperpolarized and 3D imaging data were acquired by pulse sequence of non-selective 90° acquisition, a series of non-selective 90° saturation pulses were applied to destroy residual 13C signal within the animal. A 2nd injection of the remaining hyperpolarized mixture was injected into a tube placed inside the coil, and a 13C spectrum was acquired to estimate % polarization. Urea data was normalized to the % polarization. Following Gd-DTPA (Magnevist, Bayer HealthCare), dynamic contrast enhancement imaging (DCE) was acquired using a T1-wt gradient echo sequence (TE/TR=1.11/39ms, 0.312x0.312x1.25mm, acquired over 5 min). Area under curve (AUC), initial enhancement slope, and washout slope were calculated from DCE images.

Results: Fig. 1 shows 13C urea and DCE AUC images overlaid on a TRAMP tumor prior to and 1, 4, and 8 days after radiation therapy. HP 13C urea was acquired at lower in-plane resolution (1.25x1.25x1.25 mm) compared to DCE MRI. Visually, normalized HP 13C urea signal intensity spatially correlated with the AUC of the DCE MRI signal intensity at all time points investigated. Significant correlations were found between HP 13C urea and DCE AUC, initial slope, and washout slope at all time points (Table 1). The washout slope had the weakest correlation compared to HP urea (Table 1), and there was an indication that there may be some additional information in the DCE wash-out data that was not captured by the HP 13C data.

Discussion & Conclusion: Significant correlations were found between 13C urea and DCE MR data at baseline and following radiation therapy, indicating that hyperpolarized 13C urea MRI provides similar information as DCE MRI. This finding is of clinical importance since 13C urea has a very good safety profile and could be co-polarized with 13C pyruvate to provide a simultaneous measurement of perfusion and metabolism in patients without the nephrotoxicity concerns associated with Gd-based contrast agents. However, future studies will need to investigate the accuracy of combined 13C pyruvate and 13C urea in determining cancer presence and grade relative to DCE MRI prior to and after therapy.

Acknowledgements: This project was funded by NIH grants RO1EB007588 and P41EB013598.

Table 1: correlation coefficients comparing HP 13C urea with DCE-MRI parameters, at pre-treatment, 1 day 4 days and 8 days after treatment. **P-value < 0.01** for all comparisons.

![Fig. 1: HP 13C urea and DCE-AUC from day 0, 1, 4, and 8 days after treatment.](image)
