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The presentation of this material assumes familiarity with electromagnetic 
theory at the level of an intermediate course in fields and waves, and a 
knowledge of basic NMR phenomena, implied by the ability to manually 
solve Bloch's equations in the rotating frame.  Some acquaintance with 
circuit theory and NMR probes is also desirable.  
 

The reciprocity principle is a theory of linear media, and yet, for any large 
tip-angle of the sample moment, the NMR response is non-linear.  
Nonetheless, reciprocity provides our most complete picture of signal 
formation in NMR (1).  Another complication is that reciprocity is not 
obeyed in gyrotropic media (2), i.e. those containing ferritic material, which 
category includes nuclear spins.  Finally, it is to be emphasized, despite the 
near universal use of rotating coordinates in NMR, that reciprocity 
calculations are done in laboratory coordinates.  The fact that the relevant 
electromagnetic quantities are written without the exponential time factor, 
and therefore appear stationary in time, does not signify that they have been 
transformed to rotating coordinates. 
 

The simplest examples of reciprocity, in both reciprocal and gyrotropic 
media (2), are given in terms of the theory of two-port devices.  For a 
passive two-port (i.e. containing no semiconductor components or power 
sources, and comprising only linear media), the forward and reverse transfer 
impedances, Z21 and Z12  are equal. More explicitly, we may drive port #1 
with a voltage source, and measure the resulting short-circuit current at port 
# 2; we obtain the same result if the positions of drive and measurement are 
reversed.   A more modern example gives the equality of  the S parameters, 
S21 and S12  for forward and reverse gain. 
 

In gyrotropic media, the situation is complicated by the presumed presence 
of a polarizing static field, e.g. the familiar B0 in NMR.  Then a modified 
form of reciprocity applies to 'non-reciprical' two-port devices, e.g. 
containing ferrite components.  That is, the forward and reverse transfer 
impedances are unequal, unless the direction of the polarizing field is 
reversed when the positions of drive and measurement are swapped, in 
which case the two measured transfer impedances are equal (2).    
 

While the presence of nuclear spins (say in water) has no effect upon 
reciprocity in circuit measurements, a simple illustration can be given for 
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NMR.  If a quadrature probe, loaded with an aqueous sample, is attached to 
a scanner, and an image recorded, swapping the probe cables for 
transmission and reception will then result in a null signal.  The signal can, 
however, be restored by the awkward expedient of ramping the magnet 
down to zero field, and then re-energizing it with reversed polarity. 
The discussion is made more quantitative by introduction of the magnetic 
susceptibility χ , which gives the magnetization in linear media in terms of 
the magnetic field as M = χH .  In isotropic phases, χ  is usually a scalar 
quantity, although in many solids χ is anisotropic and given by a tensor; it 
may also be defined for static or oscillatory magnetic fields, and the early 
literature of NMR is filled with discussions of the AC magnetic 
susceptibility, considered as a scalar.  
 

In fact, for NMR, χ has the unusual property that it is a tensor quantity , 
even in isotropic phases, such as liquids or gases.  For nuclei of positive 
gyromagnetic ratio, we write (3): 
                

     [1] 

 
where the complex tensor is multiplied by the complex scalar susceptibility, 
whose (typically Lorentzian) form does not concern us at the moment.  This 
tensor obeys the gyrotropic property of NMR-active media in that it 
transforms to its transpose if the static field is reversed. 
 
The equation embodies much of the phenomenology of NMR, as may be 
seen (3) by writing the excitation, in terms of the first order spherical tensors 
ξ± = ex ± iey , as H± = Hξ± .  Since we are operating in the laboratory frame 

of coordinates, a time factor exp(−iω t) is understood, but not written.  Then 
the two spherical tensor forms of H are seen to describe quadrature 
excitation with opposite senses.    With these definitions, the matrix product 
χH−  gives a non-vanishing result, whereas χH+ vanishes.  These results are 
swapped if the tensor is transposed, i.e. if the static field reverses.   Also note 
that Eq, [1] predicts a null response if excitation is applied along the z axis. 
Then this model describes mathematically the example discussed earlier in 
which the leads to a quadrature probe are switched. 
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 Our discussion so far has treated signal formation globally, in terms of both 
transmission and reception.  We will now consider reception alone, and give 
a formula for the signal voltage in NMR, which is essentially a specialized 
statement of Faraday's law.  As such, it is not subject to limits of linear 
response, and applies for any excitation of the nuclei.  
 
Our derivation does not follow the usual reciprocity arguments, but does 
make considerable use of the symmetry of Green's functions, which lies at 
the heart of reciprocity in general.  Our starting point is a volume integral -- 
of vector potential and current density, over the sample volume-- related to 
the flux ϕs  arising from the sample, and the current Ic in the coil: 

          ϕsIc = As (r)•∫ Jc (r)d3r     [2] 

 
where the subscripts s and c specify quantities arising in the sample (i.e. the 
vector potential due to magnetization) and the coil (i.e. the current density in 
the windings.)  This can be re-written using the quasistatic  Green's function 
G(r, ′r ) = 1 (4π | r − ′r |), where the primed variable is the source point and 
unprimed the observation point, as 
 

 ϕsIc = μ0 Js ( ′r )•∫ Jc (r)G(r, ′r )d3 ′r d3r∫ = Ac ( ′r )•∫ Js ( ′r )d3 ′r   [3] 

 
Note that this equality derives from the symmetry of the Green's function 
with respect to source and observation.  The swapping of subscripts c and s 
is typical of reciprocity arguments. 
 
We now write the sample current as the curl of the sample magnetization, to 
get: 

  Ac ( ′r )•∫ Js ( ′r )d3 ′r = Ac ( ′r )•∫ ∇ × Ms ( ′r )d 3 ′r   [4] 

 

which is transformed using the well known vector identity  
 

            ∇ • (A × M) = ∇ × M • A − ∇ × A • M       [5] 
 

Since the left hand side of [5] vanishes when integrated over space (by the 
divergence theorem) and since the curl of vector potential is the magnetic 
induction, we easily obtain: 

  ϕsIc = Ac ( ′r )•∫ Js ( ′r )d3 ′r = Bc ( ′r )•∫ Ms ( ′r )d3 ′r    [6] 
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Dividing [6] through by the sample current, and taking the negative time 
derivative, we obtain the sample emf in terms of the coil B field per unit 
current, and the sample magnetization, an epochal result first given by Hoult 
and Richards in their classic paper (1) of 1976 . 
 
For a uniform field irradiating a homogeneous sample, the emf resulting 
from the right hand side of [6] can be written as a bilinear form in terms of 
the susceptibility tensor and the excitation field H .   
 

   − &ϕ = iωμ0

Ic

HχHV    [7] 

 

where V is the sample volume.  For irradiation directly on resonance, by a 
linear field (say of a surface coil) with x and y components this becomes: 
 

  − &ϕ = iωμ0

Ic

i ′′χ (ω )(Hx + iHy )(H x − iHy )V  [8] 

where the complex scalar factors (H x + iHy ) and (H x − iH y ) are called the 

antenna patterns for transmission and reception respectively, for this 
particular coil.  Although these are more familiarly known the sensitivities 
(4), the term antenna pattern is used here, since these quantities obey a well 
known principle for radio transmission in gyrotropic media (2), namely that 
the antenna patterns for transmission and reception are exchanged when the 
static polarizing field reverses direction. 
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