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Traditional anticancer therapy involves treatment with radiation and DNA-damaging 
chemotherapies. More recently, insight into the molecular and genetic changes associated 
with cancer has led to a shift in anticancer drug development, and new drugs typically 
modulate specific molecular targets associated with onset and progression of the disease. 
The oncologist’s armamentarium has thus expanded substantially, and anticancer therapy 
is becoming increasingly personalized. However, assessing response to treatment can be 
challenging. Response to traditional chemotherapy and radiotherapy is typically 
associated with eventual tumor shrinkage, but this effect is frequently delayed. Many 
emerging therapies lead only to tumor stasis. Noninvasive biomarkers of drug delivery 
and molecular drug action are therefore essential in order to assess, at the earliest possible 
time point, localized drug activity and thus the likelihood of clinical response. The value 
of magnetic resonance spectroscopy (MRS) as a method to assess response will be 
presented and discussed. 
 

Response to radiotherapy and DNA-damaging chemotherapy was shown several years 
ago to result in 1H and 31P MRS-detectable metabolic changes. In particular, the 
phospholipid precursor phosphocholine (PC), which is elevated in tumors compared to 
normal tissue, drops following treatment, frequently prior to tumor shrinkage (1-3). This 
observation can be explained in part by inhibition in cellular proliferation (4-7). 1H-MRS 
detectable modulation in lactate levels has also been reported as an indicator of response 
to treatment (8-10), consistent with a reversal of the Warburg effect. Elevation in the lipid 
signal, and in particular elevation in polyunsaturated fatty acids, has been observed by 
1H-MRS and is associated with apoptosis, the program of cell death induced in many 
cases by chemotherapy and radiotherapy (10-14). Apoptosis also leads to a drop in 
cellular NADH levels, which is required for the conversion of pyruvate into lactate (15, 
16). As a result, DNA damage by chemotherapeutic agents, which leads to NADH 
depletion, is associated with in a reduction of the 13C MRS-detectable conversion of 
exogenous hyperpolarized pyruvate into hyperpolarized lactate (17, 18). The conversion 
of fumarate into malate has been shown as another hyperpolarized 13C MRS approach 
that can inform on response to chemotherapy via necrotic cell death (18).  
 

MRS has also been used to monitor the metabolic consequences of treatment with 
targeted therapies. An overall change in the 1H-MRS detectable metabolomic prolife can 
be detected (19). Additionally, specific metabolic changes have been investigated in 
detail.  PC and total choline-containing metabolites (tCho) drop following treatment with 
inhibitors of the phosphoinositide-3-kinase (PI3K) or the mitogen-activated protein 
kinase (MAPK) oncogneic signaling pathways as well as inhibitors of their common 
downstream effector hypoxia-inducible factor 1 (HIF-1) (20-26).  This effect is likely 
mediated by inhibition of the expression of choline kinase, the enzyme responsible for PC 
synthesis (7, 24, 27). Inhibition of PI3K signaling also leads to a drop in the expression of 
several glycolytic enzymes, including lactate dehydrogenase, resulting in a decrease in 
the hyperpolarized pyruvate conversion to lactate (26, 28). Interestingly, inhibition of 
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heat shock protein 90, either directly or via reduction of histone deacetylase activity, 
leads in most cases to elevation in PC levels (29-32), recently shown to result from 
elevation in choline transport (33). In some cases an elevation in GPC has also been 
reported and is due to elevated phospholipase A2 activity (33-35).  
 

Finally, because metabolic reprogramming is likely a factor in cancer development, anti-
metabolites provide anther therapeutic approach, and MRS can be used to monitor such 
therapies. Inhibition of choline kinase resulted in the expected drop in MRS-detected PC 
levels (36). Inhibition of fatty acid synthase, the enzyme responsible for lipid synthesis, 
also led to a drop in PC (37). More recently the effect of a lactate dehydrogenase 
inhibitor was monitored using hyperpolarized 13C MRS of pyruvate (38). 
 

In summary, several MRS-detectable metabolic changes have been observed following 
anticancer treatment. Whereas many of these are not specific to just one drug, they serve, 
nonetheless, as highly valuable noninvasive longitudinal biomarkers that can inform on 
drug delivery and drug target modulation to thus help predict response and identify 
resistance. 
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