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The effect of diffusion on the magnetic resonance signal was first noted by Hahn in 1950 [1] and later by Carr 
and Purcell in 1954 [2] . In 1956 Torrey incorporated these effects into the Bloch Equations, creating the so-
called Bloch-Torrey Equation [3]:

            (1)

Here, M is the magnetization of  an excited sample placed in a static magnetic field B0, γ is the gyromagnetic 
ratio, Mx, My, Mz are the components of magnetization in the x, y and z directions, M0 is the magnetization at 
thermal equilibrium, T1 and T2 are the longitudinal and transverse relaxation times and D is the diffusion 
coefficient. The first two terms of Equation 1 are the original Bloch Equation [4]. The third term of  Equation 1 
was added by Torrey. The solution to the Bloch-Torrey equation (Equation 1) for magnetization in the 
transverse plane ( Mxy = Mx + iMy ) following a 90◦ pulse is given by,

(2)

which is analogous to the well-known solution for a spin-echo experiment with an additional multiplicative factor  
exp(-bD). b describes the diffusion sensitizing magnetic gradient amplitude (G) and timing and is given by,

(3)

The use of a balanced bipolar magnetic gradient (Figure 1a) for the measurement of  diffusion was developed 
by Stejskal and Tanner [5]. The underlying principle of  the balanced bipolar gradient pulse is that the first 
gradient lobe will impart a spatially-dependent phase to each excited spin. For stationary spins, the second 
gradient lobe will reverse the phase introduced by the first gradient lobe and hence the bipolar gradient will 
have no net effect. Each proton that experiences random diffusive displacements between the application of 
the two gradient pulses will acquire a phase offset proportional to the magnitude of the displacements. The 
result is a phase dispersion proportional to the spread of positions, which in turn attenuates the signal 
exponentially according the amplitudes and timing of the gradients (b) and the diffusion coefficient (D). For a 
Stejskal-Tanner bipolar pair pulses shown in Figure 1a, b (as defined in Equation 3) is:

(4)

where G is the gradient strength in mT/m, δ is the duration of  a single lobe and ∆ is time between the start of 
the first and second lobes. The diffusion coefficient (D) along any direction can therefore be measured by 
comparing the MRI signal S with and without diffusion-weighting gradients in the following manner:

(5)

(6)

(7)
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Diffusion Tensor Imaging 
In neural tissue, water diffuses more rapidly along the length of  white matter fibres than in perpendicular 
directions resulting in an unequal (anisotropic) spread of water molecule positions which is well-described by a 
tensor formalism. Mathematically the diffusion tensor (D), is a symmetric 3×3 co-variance matrix with six 
unique elements:

(8)

To measure the diffusion tensor, ADC maps must be acquired with the diffusion sensitizing gradients applied 
along at least six non-collinear directions [6]. An excellent introduction to diffusion tensor mathematics is a 
three part series of  manuscripts written by Peter Kingsley [7,8,9]. For a regular, parallel arrangement of fibres 
the rate of  diffusion along the fibres is about ten times larger than in perpendicular directions [10]. By   
determining the direction of maximum diffusivity (the principal eigenvector of  the diffusion tensor), the 
orientation of white matter tracts and hence anatomical connections can be inferred [6,10]. This type of 
orientational information is commonly displayed using directionally encoded colour (DEC) maps [10] (Fig. 2b). 
The diffusion tensor also yields several useful metrics for characterizing diffusion in brain tissue including 
fractional anisotropy (FA) (Fig. 2a), the trace of the diffusion tensor and mean diffusivity <D> : 

(9)

(10)

(11)

where λ1,λ2,λ3 represent the eigenvalues of  the diffusion tensor. While diffusion tensor imaging has achieved 
widespread utility in the neuroimaging community, the tensor model fails to characterize tissue microstructure 
when non-Gaussian diffusion effects are present. For example,  when two or more fibre bundles cross within a 
voxel, the diffusion tensor erroneously detects isotropic diffusion. A second example of  non-Gaussian diffusion 
effects that confound the interpretation of  the diffusion tensor are tissue boundary effects (i.e. patterns of 
diffusion caused by water molecules bouncing off of  membranes or macromolecules) which can be observed 
at long diffusion times and/or when strong diffusion-encoding gradients are used. Crossing fibre and/or multi-
exponential diffusion models can be used to characterize these non-Gaussian effects but an alternative 
approach is to use a model-free method known as q-space imaging. 

Figure 1: Pulse sequence diagrams for a) diffusion-weighted spin echo, b) 
diffusion-weighted stimulated echo and c) angular-double pulsed field 
gradient diffusion imaging.
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Figure 2: Diffusion tensor images in the coronal plane: a) fractional 
anisotropy and b) directionally-encoded colour (DEC) with 
red:blue:green representing L-R:S-I:A-P. 
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Q-space Imaging 
Q-space imaging methods require sampling of  a range of q-values, where a q-value is proportional to the 
diffusion-encoding gradient area. 

(12)

Using this q-space formalism, the signal (E) at a given q and diffusion time (Δ) is given by: 

(13)

where P(r, Δ) is the spin displacement probability distribution function (pdf) or rather the probability that a 
molecule has been displaced by r in a time Δ. Therefore, the spin displacement pdf may be extracted by taking 
the inverse Fourier Transform of the signal attenuation at multiple q-values. Just as 1/kmax determines the 
spatial resolution of  an MR image, 1/qmax  determines the “diffusion-resolution” or rather the ability to resolve 
differences in the mean displacements of  water molecules. Similarly, 1/Δq determines the field-of-view  of  the 
spin displacement pdf. 

Diffusion Spectrum Imaging (DSI): If multiple q-values are acquired along multiple diffusion-encoding 
orientations an estimation of  the 3D spin displacement pdf is possible and this is the basis of  Diffusion 
Spectrum Imaging (DSI) [11,12] (Fig. 3). Since no model is assumed, 3D spin displacement pdfs can, given 
adequate qmax, Δ, and sufficient q-space sampling (angular resolution), detect any 3D diffusion pattern. In the 
case of  a single fibre orientation within a voxel, and for the large displacement (large r) and small q regime, the 
spin displacement probability distribution measured by q-space MRI is the same as the 3D Gaussian 
displacement distribution assumed in DTI [13].
  DSI has intense sampling requirements (e.g. even an 8x8x8 grid sampling qx,qy,qz space requires 512 
measurements). These high sampling requirements motivated the development of q-ball imaging [14] which 
provides an approximation of  DSI spin-displacement pdf using data acquired on only a single shell of q-space 
rather than a the full q-space grid. 
  Both DSI and q-ball require high q-values to resolve more detailed diffusion patterns and this places high 
demands on the encoding gradients since the longer it takes to play out the diffusion encoding the more signal 
is lost due to T2 decay and the lower the sensitivity of the acquisition. For these reasons, DSI acquisitions have 
traditionally been  difficult to achieve in a feasible time for an in vivo human scan and tended to use larger 
voxels compared to other diffusion imaging techniques (e.g. 3 mm isotropic) in order to gain sufficient 

sensitivity levels. Recent advances in engineering stronger 
gradients (100-300 mT/m compared to  ~40mT/m) for human 
scanners such as those built for the NIH Blueprint Human 
Connectome Project [15] are rapidly changing this paradigm and 
rendering q-space imaging methods clinically feasible for the first 
time. 

Axon Diameter Distribution Mapping: A different genre of q-space 
imaging focuses on sampling temporal q-space rather than 
spatial q-space (i.e. acquire multiple q-values at multiple diffusion 
times). If sufficiently high q-values and long diffusion times are 
acquired, it is possible to extract information about the size of 
restricted compartments(e.g axons) based on theoretical models 
of the “diffusion diffraction” patterns that they will generate. In the 
simplest version of this technique, diffusion is only encoded along 
the orientation that is orthogonal to the long axis of the white 
matter tract of  interest [16, 17, 18, 19].  The q-space data is fit to 
a model of water diffusion within and between a densely packed 
array of cylinders (axons) of varying sizes. In this way a 
probability density distribution of a range of axon sizes can 
be estimated. Since long diffusion times are needed for this 
method, a diffusion-weighted stimulated-echo pulse sequence 

Figure 3: Examples of orientation distribution functions 
generated by diffusion spectrum imaging. 
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(Fig.1b) is sometimes used to reduce signal decay during the time between the two diffusion-encoding 
gradients. Similar to DSI the high sampling demands and the need for high-q values and long diffusion times 
make it difficult to achieve clinically feasible scan times with good sensitivity. Therefore, q-space compartment 
mapping techniques have largely been limited to in vitro [16, 17, 18] and pre-clinical [19] models because the 
necessary encoding gradients have only been available on small bore MRI scanners. Development of similar 
techniques that can be performed at clinical gradient strengths is an active area of research [20,21]. 

Angular-Double Pulsed Field Gradient (DPFG) Imaging: Angular-DPFG imaging [22,23] has both a temporal 
and spatial component to its q-space sampling. Angular-DPFG imaging sensitizes the MRI signal first to 
diffusion along one orientation and then after a specified time, along a second different orientation (Fig. 1c). 
The angle between the first diffusion-encoding orientation and the second diffusion-encoding orientation is then 
gradually incremented from 0° to 180°. In this way, angular-DPFG imaging is able to resolve the shape of 
restricted compartments even if they are not coherently organized. 
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