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Preface 
The lecture targets physicists, engineers and physicians with an interest in undersampled data acquisition and 
related image reconstruction techniques with a focus at cardiovascular applications. The information herein 
structures and summarizes the general concepts along with providing the key references. 

Introduction 
Resolution and scan time are of particular concern in cardiovascular applications necessitating fast imaging to 
capture time-varying objects within a limited acquisition window and/or total scan time. To this end it is not 
surprising that developments of parallel imaging and compressed sensing have mainly been driven by 
requirements from cardiovascular imaging. 
Assuming that particular imaging properties such as contrast and repetition time should remain unchanged, the 
only option to reduce the acquisition window and/or scan time is to decrease the number of interleaves or phase-
encodes N. While resolution is not to be compromised, a reduction in N translates into reduced density of 
sampling of spatial frequencies in k-space and hence is referred to as undersampling. As k-space sampling density 
and image field-of-view are inversely proportional, the consequences of undersampling are aliasing artifacts in the 
image domain. This aliasing may be ignored or filtered in particular applications and at low undersampling rates 
(1,2). In general, however, dedicated treatment in image reconstruction is required to estimate the missing k-space 
data.  
To facilitate further discussion, the object defined in two or three spatial dimensions is assumed to consist of a 
discrete set of complex-valued voxels stacked in vector ߩԦ. Accordingly, the process of MR encoding reads: 
 
 Ԧ݀ = ߁ ∙ ܶܨ ∙ ܵ ∙ Ԧߩ + ሬ݊Ԧ  [1] 
 

with Ԧ݀ stacking the measured k-space data for all receiver coils, ߁ denoting the undersampling operator, ܶܨ the 
Fourier transform operator, coil sensitivities ܵ and noise ሬ݊Ԧ. By introducing matrix ܧ = ߁ ∙ ܶܨ ∙ ܵ the forward model 
of MR encoding simplifies to: 

 Ԧ݀ = ܧ ∙ Ԧߩ + ሬ݊Ԧ  [2] 
 
Image reconstruction now refers to solving the inverse problem to [2] i.e. finding image ଓԦ that is consistent with the 

acquired data Ԧ݀ within the uncertainty given by the noise variance ߝ = ଵேିଵ ∑ ݊௜ଶே௜ : 

   

 ฮ Ԧ݀ − ܧ ∙ ଓԦฮଶଶ ≤  [3]   ߝ

 
Traditionally, image reconstruction in standard and parallel imaging has been considered a linear problem. For an 

overdetermined problem, image ଓԦ is found using the normal equation ܧு Ԧ݀ =  :ଓԦ according toܧுܧ
 

 ଓԦ = ுܧଵି(ܧுܧ) Ԧ݀   [4] 
 
Besides data Ԧ݀, equation [4] requires knowledge of the undersampling pattern ߁ and coil sensitivities ܵ. While the 
interleave/phase-encode table of the pulse program defines matrix ߁, the coil sensitivities ܵ have to be estimated 
from a pre-scan, from the data itself or from fully sampled reference lines acquired with the actual data.  
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Without undersampling (R=1), equation [4] simplifies to the inverse Fourier transform resulting in sensitivity-
weighted images for all receive coils: 
     ܵଓԦ = ுܧ Ԧ݀ = ଵିܶܨ Ԧ݀  [5] 
 

Here the size of vectors Ԧ݀ and ଓԦ are equal. Without taking into account any prior knowledge about the object 
imaged it is implied that one needs to acquire as many k-space samples Ԧ݀ as there are voxels ଓԦ to reconstruct. 

Parallel imaging 
To reduce the number of interleaves/phase-encodes N, undersampling is employed in conjunction with coil array 
detection. If the reduction factor R is smaller than or equal to the number of independent coil elements Nc the 
linear reconstruction problem reads (3): 

   ଓԦ = ு߰ିଵܧଵି(ܧு߰ିଵܧ) Ԧ݀   [6] 
 
Here the noise covariance matrix ߰ is included to account for differences in coupling of the coil elements to the 
object and potential mutual coupling among coil elements.  
Prior knowledge about the object may be incorporated to further regularize equation [6] to avoid small values in 
the inverse and hence excessive amplification of noise. Such prior knowledge may, for example, identify 
background voxels that are known to contain noise only (3). By introducing the regularization matrix Θ the image 
reconstruction problem is now written as: 

 ଓԦ = ܧு߰ିଵܧ) + ு߰ିଵܧΘିଵ)ିଵߣ Ԧ݀  [7] 
 
Parameter λ permits adjusting the influence of the prior information. If the reduction factor exceeds the number of 
independent coil elements i.e. R>Nc the reconstruction problem becomes underdetermined and necessitates 
regularization: 
  ଓԦ = Θܧு(ܧΘܧு + ଵି(߰ߣ Ԧ݀  [8] 
 
While the equations above are directly applicable to image-domain parallel imaging approaches as introduced with 
SENSE (3), one may apply the Fourier transform to equation [6] to arrive at an equivalent k-space representation as 
used in GRAPPA and variants thereof (4,5) providing unfolded images for each coil element: 
 

 ܵଓԦ = (ு߰ିଵܧଵି(ܧு߰ିଵܧ))ܶܨ)ଵିܶܨ Ԧ݀ ) = ෨ܨ)ଵିܶܨ Ԧ݀)  [9] 
 
The practical fact that coil sensitivities are spatially smooth functions and hence have a compact representation in 
k-space requires only few entries in matrix ܨ෨  to reconstruct an image to good approximation (6). 
 
Limits 
Regardless of the particular parallel imaging method used, there are limits to the maximum undersampling factor R 
achievable in practice. The “ease” of solving the inverse problem is expressed by the spatially dependent geometry 
factor ݃ (3):  

 Ԧ݃ = ට(ܧு߰ିଵܧ)௜,௝(ܧு߰ିଵܧ)௜,௝ିଵ ≥ 1 [10] 

 
Accordingly, the signal-to-noise ratio (SNR) in the reconstructed image will be inversely proportional to both the g-
factor and the square root of the reduction factor R: 

 ܴܵܰ ∝ ଵ௚(௫)√ோ [11] 

 
Intuitively, the ability of surface coils to encode spatial information is given by the orthogonality of their spatial 
sensitivity patterns, which is essentially determined by fundamental electrodynamics (7,8). It has been 
demonstrated that beyond a reduction factor of about 4, the g-factor increases exponentially when reducing the 
number of phase-encodes along one dimension in Cartesian imaging. If reduction of phase-encodes along two 
orthogonal dimensions is possible, the critical reduction factor can roughly be squared yielding a critical reduction 
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factor of 16. These theoretical limits are now being approached with the wider available of large coil arrays 
featuring 32 and more independent receive elements (9-11). 
By including prior information about the image to expect, small entries in the inverse in equations [7] and [8] can 
be avoided and, accordingly, excessive noise amplification reduced. The prior knowledge matrix Θ may be 
populated based on estimates from low-resolution data, which can be obtained separately or interleaved with the 
undersampled acquisition. In k-t SENSE and related techniques (12-15) the signal estimates in Θ have been 
referred to as training data. 
 
Implementation 
Besides the reconstruction domain (cp. equations [6] and [9]), the main difference between the various 
implementations relates to the process of measuring coil sensitivities ܵ. Sensitivities can be obtained explicitly 
using separate pre-scans (3), or implicitly using auto-calibration data acquired interleaved with the undersampled 
acquisition (16) or using the temporal average of data undersampled in k-t space (17). Radial and spiral trajectories 
inherently provide a densely sampled k-space center and hence provide coil sensitivity data implicitly (18, 19). 
A number of implementation issues of parallel imaging have, however, been identified in relation to explicit and 
implicit calibration (20-22). Inaccuracies of coil sensitivities may arise from positional inconsistencies in particular 
when explicit calibration is used. Likewise, partial volume effects, aliasing artifacts and noise in the sensitivity maps 
can compromise reconstruction quality. 
A solution to address inconsistencies between sensitivities and data includes sensitivities as an unknown into the 
reconstruction process. In JSENSE sensitivities are modeled by a low-order polynomial function and its coefficients 
are estimated as part of image reconstruction (23) hence treating both the image and the sensitivities as 
unknowns. However, reconstruction errors occur if the model fails to describe the coil sensitivities. 
An alternative to modeling sensitivities explicitly is to recast the reconstruction task as a set of linear equations in 
k-space (24): 

 minimize ฮ(ܩ − (ܫ Ԧ݀஼ฮଶଶ  s.t.  ฮ Ԧ݀ − ܦ ∙ Ԧ݀஼ฮଶଶ ≤  [12] ߝ

 
Here ܩ is a calibration matrix used to synthesize a point from its neighborhood. It allows extracting coil sensitivities ܵ. Vector Ԧ݀஼  contains the reconstructed Cartesian k-space samples and operator ܦ relates the Cartesian k-space 
samples to the data acquired on an (arbitrary) trajectory. 
 
Non-linear reconstruction 
While the image reconstruction task up to this point as been considered a linear problem, recent work has 
indicated that regularized non-linear inversion can address some of the implementation issues associated with 
parallel imaging (25). Moreover, it has been questioned if the image reconstructed using the pseudo-inverse in 
equation [4] is really the best choice among all possible images satisfying the data consistency constraint in 
equation [3].  
Instead of expressing image reconstruction as a linear problem, it may also be modeled as a non-linear operator 
equation with operator ܨ෠ simultaneously mapping the complex-valued voxels ߩԦ and the coil sensitivities ݏԦ for each 

of the Nc coils to k-space data Ԧ݀: 
 Ԧ݀ = ,Ԧߩ)෠ܨ Ԧଵݏ …  Ԧே೎)  [13]ݏ
 
The non-linear system can be inverted by linearizing the functional around an initial guess (ߩԦ, Ԧଵݏ …  Ԧே)ᇱ andݏ
updating the solution iteratively using the Gauss-Newton method. Since equation [13] is highly underdetermined 
even without undersampling, regularization is required. To this end, sensitivities ݏԦ can be assumed to be smooth 
functions in space (25) and hence the number of coefficient to solve for is reduced. Additional variational penalties 
may be introduced to enforce piece-wise constant images (26). One implementation of a variational penalty is 
given by the total variation (TV) defined by the spatial gradient operator ∇: 
 
  ܸܶ(ଓԦ) = ∑ |∇ଓԦ௫|௫   [14] 
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Using the iteratively regularized Gauss-Newton (IRGN) method in conjunction with the TV constraint, equation [13] 
can be solved. Up to 10-fold undersampling of 2D radial imaging of the beating heart has been demonstrated 
outperforming previous parallel imaging implementations significantly (26). 

Compressed sensing 
Like in parallel imaging, compressed sensing (27,28) aims to reconstruct images from fewer samples than 
traditionally required by Shannon’s sampling theorem. While parallel imaging in general does not require 
assumptions about the object to be imaged, compressed sensing makes explicit use of the fact that objects are 
sparse or can be sparsified using a suitable transform operation.  
In general, three conditions have to be met for compressed sensing to work. First, the image or a transform 
thereof is required to be sparse i.e. only a subset of all entries in ଓԦ are expected to assume values different from 
zero (or noise). While this condition is fulfilled for angiographic data directly, dedicated transform operations are 
required to sparsify other objects. The Wavelet transform has been shown particularly efficient in compressing 
image data of various anatomies (27). Besides Wavelets, the temporal Fourier transform or other temporal 
transforms may be employed (29). The second condition of compressed sensing requires incoherence between the 
sparse representation of the object and the data points sampled in the sensing domain. This requirement can be 
well approached by using random sampling patterns in the sensing domain. In practice it is implemented by 
randomly sampling N/R profiles in k-space. The third requirement relates to the deployment of non-linear 
reconstruction to select among all possible images ଓԦ the one that is most probable and closest to the desired 
object. Mathematically this minimization problem can be written as: 
 

 minimize ԡ߶ଓԦԡ௣ + s.t.  ฮ  (ଓԦ)ܸܶ ߣ Ԧ݀ − ܧ ∙ ଓԦฮଶଶ ≤  [15] ߝ

 
Here ߶ represents the transform operator to compress the object and ԡ ԡ௣ the ܮ௣-norm. Most implementations 
choose ݌ = 1 as it converts the reconstruction task into a convex optimization problem. Instead of considering the 
constrained optimization problem as posed in equation [15], the unconstrained problem in Lagrangian form may 
be used instead: 

 argminฮ Ԧ݀ − ܧ ∙ ଓԦฮଶଶ + ଵԡ߶ଓԦԡଵߣ +  ଶ ܸܶ(ଓԦ)   [16]ߣ

 
Here parameters ߣଵand ߣଶdetermine the relative weights of sparsity and the total variation penalty relative to 
required data consistency.  
 
Limits 
For most objects in cardiovascular imaging the sparsity condition can only be approximated. It has been 
demonstrated that reduction factors between 2 and 4 are well applicable in practice. However, at larger reduction 
factors image quality starts degrading significantly. There has been theoretical evidence that good image 
reconstruction quality is obtained if the number of k-space points to sample exceeds the number of sparse 
coefficients representing the object by a factor of 3-5 (27). Accordingly, compressed sensing performance is 
inherently dependent on the actual object to be imaged. 
Another issue relates to the limited “randomness” that can be created with the small number of 
interleaves/phase-encodes available in practical cardiovascular imaging protocols. To judge the suitability of a 
chosen random sampling pattern, the side-lobe-to-peak ratio of the point-spread function has been proposed (27). 
Finally, the optimal choice of the parameter(s) in equations [15,16] depends on the application and often requires 
application-specific tuning. 
 
Implementation 
A number of variants of the original Sparse MRI method (27) have been proposed over recent years. In order to 
address image degradation at higher reduction factors, the combination of compressed sensing with parallel 
imaging has been a logical extension. While in its most simple implementation compressed sensing and parallel 
imaging are applied sequentially (30), distributed compressed sensing integrates the signals from all coils into 

vector Ԧ݀ (31,32) and hence permits exploiting additional joint sparsity introduced by the differences in receive 
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sensitivities among coil elements. A number of recent cardiovascular applications of distributed compressed 
sensing have demonstrated reduction factors of 8-10 for cine and contrast-enhanced perfusion imaging (31-33). 
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