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Target audience. Built on a basic physical understanding of classical electrodynamics as instructed in graduate 
physics courses, in this lecture electromagnetic (EM) models represented by EM field, current, and charge 
distributions in space obtained from numerical computations are explained and how they arise from analytical 
forms of Maxwell’s equations. The MRI physicist shall gain a principal overview on the mathematical 
background of how to translate the analytical form into numerical algorithms and how boundary conditions are 
taken into account. 
 
Objectives. In textbooks Maxwell’s equations are often written in their elegant form as first-order differential 
equations. Solving them to attain the electric and magnetic fields requires taking into account specific 
boundary conditions imposed by the particular system under consideration. In the lecture it will be explained 
how Maxwell’s equations can be solved numerically and, in the case of complex boundaries and material 
distributions,  why it is more straightforward to apply integral forms of Maxwell’s equations, because boundary 
conditions may lead to discontinuous and non-differentiable functions, which can be dealt with in a sound 
manner by advanced techniques of integral calculus [1]. Furthermore, setting up discrete EM models to obtain 
electric and magnetic fields appears less complicated when using integral forms as a starting point. In these 
discrete models space is partitioned into small cells which form a mesh and the EM model is computed on this 
mesh. 
 
Methods and Examples. The procedures involved are exemplified by elucidating one particular class of models 
based on algorithms of the finite integration technique (FIT) introduced by Weiland [2], appropriate for 
numerically solving Maxwell’s equations. The role of meshing 3D space will be explained. Two particular model 
examples are discussed: (a) an EM model for the propagation of a microwave beam inside an NMR probe that 
allows dynamic nuclear polarization (DNP) experiments – here the wavelength (millimeter or sub-millimeter) of 
the high-frequency field distribution is short compared to or of the same order of magnitude as the sample or 
the probe, and (b) an EM model of a single loop used as an MRI surface coil for the human head, where the 
wavelength (several meters) is much larger than the spatial extension of the sample. 

 
Figure 1: Geometrical cross sections 
through example structures (a) and (b) 
and numerically computed magnetic 
field distributions in magnitude  repre-
sentation (c) and (d) at frequencies of 
interest (263 GHz and 114 MHz, 
respectively). 
 
Discussion. Although nowadays many 
sophisticated, efficient, and far-deve-
loped numerical codes exist to solve EM 
problems, it is essential to validate 
results obtained by numerical 
computation with indicators obtained 

through experiments. Only the comparison of simulation data with typical experimental situations wherever 
possible provides the certainty and safety desired for EM modeling and allows the application of models 
extended to circumstances which are not directly accessible by measurement. 
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