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Goals 

The talk is intended to benefit all individuals who are interested in the equations that are used implicitly 
or explicitly for essentially all research and development in MRI and MRS. Individuals who will benefit 
most from the course will have recently completed a graduate educational programs in MRI, or will have 
several years of direct clinical experience, research and or development experience in MRI, but who do 
not have prior formal training in basic graduate level physics. The course was motivated from the 
experience of many recent engineering graduate students, as well as many scientists and physicians 
active in MRI, who found that their prior formal training did not include the basic graduate level physics 
that would allow them to understand the origin of these equations. Also, they found that this basic 
physics was not covered in other professional educational resources. The talk will be 25 minutes 
followed by 5-minutes for questions from the audience. In addition, the lecturer will be available for the 
20-minute “meet the teacher” break and at the end of the first section of lectures. This lecture will be 
ideal for audience members preparing for the scientific meeting; the lecture provides essential 
background material that will aid in understanding the content of the lectures in the ISMRM meeting.  

Summary 

The talk will review the equations from quantum mechanics that have been successful in explaining the 
interaction of single protons and collections of protons (proton ensembles) with external magnetic 
fields. It will conclude with quantum mechanical and classical descriptions of the detection of proton 
magnetic moments using an RF coil, and with a novel derivation of the Bloch equation in which the 
terms for magnetization precession, thermal equilibrium and relaxation are independently derived from 
quantum mechanics and combined. The paragraphs below briefly describe these topics, which will be 
elaborated in the talk.  

Relativistic Dirac equation predicts intrinsic spin and intrinsic magnetic moment 

The intrinsic spin of the electron (and other charged point particles) was elegantly predicted by P.A.M. 
Dirac. By requiring that the quantum mechanical wavefunction of the electron obey a first order 
differential equation, and by requiring that the differential equation be invariant under Lorentz 
Transformations, a magnetic coupling term between the electron and externally applied magnetic field 
emerged in the differential equation. The coupling term generated behavior of the electron consistent 
with the electron having an intrinsic magnetic moment and an intrinsic spin. Prior to this derivation by 
Dirac, Pauli had imposed the same magnetic field interaction term into a scalar non-relativistic 
Schrödinger differential equation. Wavefunctions solving this equation represented particles that 
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demonstrated intrinsic magnetic moment and intrinsic spin in experiments. Dirac’s equation was more 
elegant and profound in that it produced the interaction term, along with the concepts of intrinsic spin 
and intrinsic magnetic moment, only from the requirements of differential equation linearity and 
Lorentz invariance.  

Although work by Dirac, Pauli and others, e.g. Zeeman, was motivated by the challenge of 
understanding the electrons’ influences on the atomic spectrum of the hydrogen atom, experiments 
with the proton demonstrated that it also had an intrinsic spin and intrinsic magnetic moment. The 
intrinsic spin of the proton was the same value (½) as that for the electron, but the strength of the 
magnetic moment that resulted from the intrinsic spin was not predicted by the prior theoretical work 
of Dirac and Pauli. The numerical value of the proton’s magnetic moment predicted by this prior 
theoretical work became known as the Nuclear magneton (which appears in most tables of 
Fundamental Physical Constants), and the adjective “anomalous” became accepted to indicate that the 
magnetic moment’s strength was not as predicted for true point particles, but instead had to be 
determined experimentally. Like the proton, the neutron also behaved as a spin ½ particle and 
possessed an anomalous magnetic moment, and in ensuing research, other hadrons were found to have 
half-integer spin and anomalous magnetic moments. While there currently exists no satisfactory nuclear 
theory to accurately predict (e.g. to 2-3 decimal places) these anomalous values across the family of 
hadrons, the quark model of these particles (in which the proton is composed of two up and one down 
quark, and the neutron is composed of two down and one up quark) provides the most accurate 
predictions. It is interesting that the strength of the proton magnetic moment, the most fundamental 
parameter upon which MRI depends, cannot be theoretically explained.  

Spinors represent the quantum mechanical properties of single protons 

The non-relativistic approximation of the Dirac equation, with the inclusion of an anomalous magnetic 
moment replacing the Nuclear magneton in the equation, accurately predicts the action of a single 
proton under the influence of external magnetic fields such as those applied in an MRI system. This 
equation is also well-known as the two-component Schrodinger equation (in some references, it is 
known as the two-component Pauli equation). The two-component solutions of this equation 
representing single protons are called spinors, not vectors, in recognition of the fact that these solutions 
do not transform as vectors under coordinate rotations. The spinors have two distinct complex-valued 
components, and different specific values for these components are identifiable with the spin-up proton 
or spin-down proton, possessing positive or negative magnetic moment, respectively, and possessing 
low or high energy, respectively, if in a static magnetic field. In general, specific values for the spinor 
components are identifiable with specific probabilities that the proton represented by the spinor will be 
detected with a positive or negative magnetic moment. The non-relativistic approximation of the Dirac 
equation and its spinor solutions can also be derived from first quantization of a simple classical model 
of a charged particle in a magnetic field revolving around a virtual point. This classical model provides 
greater intuitive physical insight into the relationship between spin, angular momentum, magnetic 
moment and the gyromagnetic ratio possessed by the proton. 

The collection of protons in each voxel develops a thermal equilibrium magnetization 
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In the presence of a static magnetic field, a greater number of spin-up (low energy) protons than spin-
down (high energy) protons will develop, provided there is a mechanism for energy exchange between 
the spin system and the system consisting of quantum states of the surrounding molecules (the lattice). 
This slight excess of spin-up protons produces a net magnetic moment in each voxel, which at 
equilibrium is called the thermal equilibrium magnetization. Deriving the specific numerical value for the 
thermal equilibrium magnetization requires a model in which the quantum mechanical states in the spin 
system and in the surrounding molecules can be separately enumerated (counted), for any partition of 
energy between the two systems. The partition of energy that yields the greatest number of assessable 
quantum states will be the partition of energy that is observed in MRI experiments. Using binomial 
terms for counting the number of spin-up and spin-down proton combinations for any specific energy in 
the spin system, and a free-particle kinetic energy model for counting states for any specific energy in 
the lattice, the well-known Boltzmann equation can be derived. The Boltzmann equation reveals that at 
thermal equilibrium the number of protons in the low energy state exceeds the number in the high 
energy state by small fraction. For a 1.5T system, this fraction is approximately 5 protons excess per 
million protons in the spin system.  

The protons in each voxel can be represented using a common probabilitistic spinor  

At thermal equilibrium, the protons in each voxel are accurately represented by spinors with a common 
mathematical form, and the spinors representing different protons differ only with respect to complex 
phase factors multiplying each spinor component. Summing the magnetic moments of all protons, the 
correct thermal equilibrium magnetization is obtained, provided that across all protons the phase angles 
of these factors are randomly and uniformly distributed over their full range of possible values. In MRI, it 
is often assumed that a small number of excess spin-up protons, generated by energy exchange with the 
lattice in the static magnetic field, are unchanging in time and solely constitute the observed 
magnetization. However, in reality at any given time during the pulse sequence, any of the protons in 
the voxel might contribute to the observed magnetization. So, it is more realistic to consider that all of 
the protons are contributing to the magnetization but that the majority of the contributions are 
canceling each other out. Mathematically, this cancellation is shown to result from the statistical 
distribution of the phase angles assigned to the spinors.  

The RF coil detects the net magnetic moment (magnetization) of the protons in each voxel 

Immediately after nutation of the magnetization by an RF pulse, and throughout the pulse sequence, 
the values of the spinors representing the individual protons in each voxel are rapidly changing due to 
the interaction of the proton magnetic moments with the external magnetic fields. The RF coil detects 
the magnetic moment of each precessing proton as a quantized unit of induced electromotive force 
(emf), in accordance with Faraday’s classical law of electromagnetic induction, and each magnetic 
moment is detected as either positive or negative, as either a positive or negative unit of induced emf, 
respectively. At any given time, the net magnetic moment (the magnetization) from the entire collection 
of protons is detected by the total induced electromotive force (emf) in the coil. In a large collection of 
protons, the total induced emf is proportional to the number of positive magnetic moments detected, 
minus the number of negative magnetic moments detected. The number of positive magnetic moments 
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detected is equal to the probability that a single proton is detected with positive magnetic moment, 
multiplied by the total number of protons. A similar statement applies to calculating the number of 
negative magnetic moments detected. For example, if each proton in a collection of 1012 protons has a 
50.00025% probability of being detected with positive magnetic moment along the direction of 
sensitivity of the RF coil, and a 49.99975% probability of being detected with negative magnetic moment 
along that direction, then a positive net magnetic moment, corresponding to the combined moments of 
5x106 protons, will be detected as a net positive induced emf in the coil. Although the magnetic moment 
of each proton is quantized, and detected through a positive or negative unit of induced emf, the total 
induced emf in the RF coil appears to have a continuum of possible values, because an extremely large 
number of protons contribute to the emf. The total induced emf is not observed as being quantized. 

Magnetization decay caused by random time-varying magnetic fields acting on each proton 

It is well established from theory and experiment that a negative exponential characteristic time, 
defined T2, is identifiable as the time constant for decay of transverse proton magnetization during 
signal detection, and a negative exponential characteristic time, defined T1, is identifiable as the time 
constant for decay of longitudinal magnetization, as well as the time constant for recovery of 
longitudinal magnetization towards thermal equilibrium. These characteristic times can be derived using 
a Gaussian random process model of time-varying microscopic magnetic fields, acting locally and 
independently at each proton. These random time-varying magnetic fields result in a gradual loss of 
similarity of spinors representing the protons, and the characteristic times can be directly calculated 
from the correlation time and temporal variance of the fields. In addition, tissues are composed of a 
multitude of water compartments, each with unique T1s and T2s, and water molecules typically 
exchange very rapidly between the different compartments relative to the typical intervals for data 
collection in an MRI experiment. Consequently, the characteristic times observed in the MRI experiment 
are the weighted average of the times in each of the compartments.  

Putting the effects together to construct the Bloch equation 

By linearly combining the independent contributions to the time derivatives of proton magnetization 
arising from (1) the two-component Schrödinger equation describing the dynamics of single protons 
interacting with external magnetic fields, (2) the recovery of longitudinal magnetization based on energy 
exchange between the spin system and the lattice and (3) the decay of magnetization due to the action 
of microscopic random magnetic fields, the well-known Bloch Equation is obtained.  See [Buonocore 
2009] for the mathematical details of this construction. 

QFT should be used to describe the interaction between proton and RF coil 

A significant limitation of the presented model of induced electromotive force (emf) in the RF coil is that 
it treats the effect of the precessing proton magnetic moment on the RF coil in accordance with classical 
electromagnetism, rather than in accordance with quantum mechanics. At the point in the model when 
the induced emf in the RF coil is calculated, we ignore the inherent quantum mechanical interaction that 
exists. Specifically, we do not consider quantized energy and or magnetic moment exchange between 
the quantum states of the proton and those of the current or emf in the coil. Instead, the protons in the 
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voxel are seen as creating a classical net magnetic moment, which creates a classical dipole magnetic 
field with field lines that cut through the circular loop of the RF coil, inducing (mainly during precession) 
a current and voltage in accordance with Faraday’s law of electromagnetic induction. The quantum 
mechanical interaction between the spin and coil is neither explained nor modeled. 

Quantum Field Theory (QFT) has be used to more accurately describe the interaction of one proton or a 
collection of protons with an RF coil. A QFT formulation of signal detection includes a representation of 
the quantum states of the current and emf in the RF coil, a representation of the quantum states of the 
protons that interact with the coil, and a representation of the interactions of these quantum states as 
virtual photons. An alternative approach has been developed in which the RF coil and proton magnetic 
moment are modeled through a common energy equation (Hamiltonian equation), in which the 
quantum states are coupled not through a virtual photon field but empirically through specific 
interaction terms in the Hamiltonian. See [ [Engelke 2010] and [Sykora 2009] below for details regarding 
the QFT and other formulations. 
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