An Introduction to Quantitative Imaging Stephen Wastling, King's College London, Stephen.Wastling@kcl.ac.uk

Title: Basic Image Manipulation and Measurements

Highlights:

- An introduction to the concept of quantitative imaging with a summary of the range of parameters that can be measured with MRI.
- A practical demonstration of some simple manipulations and measurements of MRI images.

Target audience: Researchers and clinicians wishing to understand and implement quantitative measurements.

Purpose: To introduce the concept of quantitative imaging and describe how to perform simple measurements on MRI images.

Objectives: Following this talk, attendees should be able to:

- Appreciate the range of quantitative parameters which can be measured using MRI
- Use freely available software to:
 - Perform simple manipulations of images
 - Measure properties of images such as their signal-to-noise ratio
- Recognise the effect of random and systematic errors on the quantitative parameters calculated from MR images.

Methods: MRI is routinely used to produce qualitative images with different weightings, e.g. T1, T2 etc.... These provide an impressive visualisation of normal and pathological tissues; however the signal in each voxel is dependent upon a combination of factors. Important information can also be extracted from *quantitative images* – maps of the physical properties of tissues. Examples include images of longitudinal and transverse relaxation times; magnetisation transfer, flow, perfusion and diffusion parameters; magnetic susceptibilities and metabolite concentrations.

Results: In a simple practical demonstration the audience will be guided through a measurement of the signal-to-noise ratio (SNR) of an image. A demonstration of the impact of SNR on the fitting of quantitative parameters that decay exponentially such as T_2 , T_2^* etc..., will be presented.

Discussion: Quantitative measurements are affected by both random and systematic errors. Therefore it is crucial to determine the experimental uncertainty of a measurement and to quote it with the results of the measurement, for example T_2 =66±5 ms. By doing so others will know the level of precision of your measurement, and hence how confident they should be that it reflects the true value of the parameter being measured.

Conclusion: Quantitative imaging encompasses a wide number of techniques which can provide a rich and diverse range of information about both normal and pathological tissues complementing the information gathered from qualitative images.

Suggested Reading:

- Paul Tofts Quantitative MRI of the brain: measuring changes caused by disease
- Donald W. McRobbie, Elizabeth A. Moore, Martin J. Graves, and Martin R. Prince *MRI: From Picture to Proton*