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This talk is aimed at both physicists and clinicians, who are interested in recent developments in 
accelerated imaging and their applicability to angiographic MR imaging. 

Magnetic Resonance Angiography (MRA) is an attractive non-invasive imaging choice that has shown 
utility in visualizing vasculature and blood haemodynamics.  MRA is general term comprising a number 
of imaging techniques, including both single image and time-resolved imaging with or without the use of 
contrast agents.  While many of MRA techniques may benefit from increased spatial and/or temporal 
resolution, time-resolved contrast-enhanced (CE) imaging often is in a particular need of acceleration.  
Indeed, in many diseases useful information can be gleaned from separate images of arterial and venous 
enhancement, hence rapid passage of contrast puts a bound on the acquisition time of a single frame, 
depending on application.  For instance, such pathologies as intracranial arterial-venous malformations 
may require temporal resolution on the order of 0.5 - 1 s [1], while imaging of upper and lower 
extremities would benefit from 3-7 second frames [2].  At the same time, inherently low speed of MR 
acquisitions limits the number of k-space samples that can be acquired within a given time period.  This 
duality creates a typical for MRA need for a tradeoff between spatial resolution/coverage on one hand 
and temporal resolution on the other hand.  An attempt to maintain both high spatial and temporal 
resolution inevitably leads to the need to reconstruct images from incomplete data.  Since conventional 
reconstruction from undersampled data produces aliased images and SNR degradation, a number of 
advanced imaging techniques have been proposed to deal with this problem. 

The required acceleration can be achieved on either acquisition side (e.g., by using efficient non-
Cartesian trajectories [3-5] or specialized Cartesian acquisitions [6-8]) or reconstruction side (e.g. by 
using constrained reconstruction).  Often, the two are developed jointly to maximize the benefits.  MRA 
may offer unique sources of prior knowledge that may serve as a basis for acceleration.  For example, a 
singular advantage of many MRA methods is sparsity of the image content, which is reached by special 
processing, such as mask subtraction in CE MRA [9,10] or complex difference processing in phase 
contrast imaging [11-13].  In such images, only a small portion of image pixels are bright (vessels) and 
the remaining pixels, representing background and/or stationary tissues, have values that  are zero or 
insignificant.  A benign behavior of the point spread function for many projection reconstruction-
inspired trajectories (i.e., VIPR [5] or CAPR [6]) induces incoherent, dispersed aliasing artifacts in images 
with significant spatial sparsity, thereby allowing for some acceleration via solely k-space 
undersampling.  However, for larger accelerations, even these artifacts become significant enough to 
cause noticeable degradation of SNR and spatial resolution to compromise diagnostic image quality, and 
further improvements require modified image reconstruction.  One of the popular ways to improve 
image quality in time-resolved imaging is to use view-sharing, which is achieved by filling in the 
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unsampled positions in k-space by the data acquired in the neighboring frames.  Commonly, low 
frequency information is updated more often, while high frequency information is sampled less often.  
We will discuss several established view-sharing approaches such as keyhole method [14], tornado filter 
[5], TRICKS [11], or TWIST[15].   

The use of view-sharing in conjunction with regular linear reconstruction inevitably widens the impulse 
response function, which leads to modification of temporal waveforms [16], usually, in the form of 
smoothing out.  The severity of this distortion depends on the level of acceleration and, hence, the 
necessary amount of view-sharing.  Additionally, view-sharing may create extraneous temporal 
correlations between images in a time series, which may be tolerable in some applications but 
undesirable in others.  However, the existing true correlations between images in a series may be used 
to design a regularized reconstruction approach, which would allow a higher degree of acceleration 
without negatively affecting temporal dynamics.  We will discuss several non-linear techniques, which 
utilize spatio-temporal correlations in reconstruction algorithm design.  In particular, we will look at 
applications of regularized reconstruction methods (including compressed sensing approaches), which 
exploit joint sparsity in k-t or x-f space [17-20].  We will also consider a different type of constrained 
reconstruction, namely, HYPR algorithms [21-24], which utilizes spatial sparsity through the use of 
multiplicative constraint.  We will discuss achievable acceleration factors and sources of potential error 
in applications of these techniques, as well as the issue of temporal resolution of such methods.  The 
latter question does not have a straightforward solution since for nonlinear algorithms there is no direct 
relationship between temporal footprint and actual temporal resolution, unlike in the case of linear 
reconstruction.  Therefore, true temporal resolution of each method needs to be determined 
experimentally or a non-linear analogue of an impulse response function needs to be introduced.   

In the end, we will summarize the discussed techniques, accelerations achievable with them and 
potential drawbacks/inaccuracies to make it easier to decide which technique may be more suitable for 
a particular angiographic application. 
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