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Introduction Typically MRI data is collected on in a 
rectilinear, or Cartesian, sampling pattern.  Image 
reconstruction can then be performed with a simple 2D (or 
3D) discrete Fourier transform.  However, there is a long 
history of acquisition methods using non-Cartesian sampling 
patterns, going back to the very beginning of MRI.  These 
include spiral and  radial acquisition methods as shown in 
Fig. 1. There are many others, as well as 3D extensions. 
These require a more sophisticated reconstruction methods, 
and have been a major area of research in MRI.  In this 
presentation the basic ideas and technical issues involved 
with these reconstruction methods will be described.

Problem Statement  There are several related problems 
here.  The fundamental problem is that we have non-
uniformly spaced samples in the spatial frequency domain, 
and we want to generate uniformly space samples in the 
image domain.  An initial interpolation in the frequency 
domain is followed by a Fourier transform.  This presents 
both problems and opportunities.  Interpolation methods that 
would be suitable in the image domain produce significant 
artifacts after the transform.  However, some of these are 
easily corrected, and this allows very simple interpolators to 
be used provided they are designed with the subsequent 
transform in mind.

The basic problem is illustrated in Fig. 2 for two spokes of a 
radial acquisition.  We would like to determine the value of 
the Cartesian samples from the adjacent samples from the 
radial acquisition.  There are several approaches we could 
use.  Here we will focus on a class of solutions that 
approach the problem convolving the acquired data with a 
kernel, and then resample the data onto the Cartesian grid. 
This is illustrated in Fig. 3.  After the data has been 
resampled, a 2D DFT takes the data to the image domain. 
These approaches are generally known as “gridding” 
reconstructions, and are a special case of the non-uniform 
FFT (NUFFT).  The NUFFT includes many different 
variations, depending on whether the source domain, 
destination domain, or both, are non-uniform, and how the 
kernel is designed.

Gridding Kernels The initial paper that started the interest in 
gridding was by O’Sullivan [1], who was motivated by sinc 
interpolation.  The issues with this are shown in Fig. 4. The 
convolution with the windowed sinc corresponds to 
apodization in the image domain, as well as aliasing from the 
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Fig. 1 Spiral and projection (radial) are the 
most widely used non-Cartesian sampling 
patterns, although there are many others.
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Fig. 2 Interpolating Cartesian data points 
from samples of a radial acquisition.
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Fig. 3  Gridding kernel convolution and 
resampling
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Fig. 4 A windowed sinc interpolation in 
spatial frequency results in aliasing in the 
image domain.
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adjacent sampling replicas.  This can be minimized by using 
a larger kernel to contain these effects to the edge of the 
FOV, but this is expensive in computation time. At the time 
of ref. [1], this was a major concern.  The solution was to 
use a very simple single lobed gridding kernel.  The problem 
this presents is shown in Fig. 5.  The amplitude of the 
apodization is equal to the amplitude of the aliased signal 
from the next sampling replica at the FOV/2.  The solution 
O’Sullivan proposed was to sample more finely in spatial 
frequency to move the sampling replicas out, and provide 
room for a transition band. This is shown in Fig. 6.  
Originally this oversampling factor chosen as 2, and this 
works remarkably well for almost any reasonable kernel. 
Aliasing is small, and the apodization can be corrected by 
dividing by the transform of the gridding kernel. In Jackson 
[2] several kernels were studied, and an optimized Kaiser-
Bessel kernel was described.  This has been widely used ever 
since.  Several other kernels have been described, including 
a Gaussian [3] (from the NUFFT literature) and optimized 
kernels [4,5].  One of the major limitations of this approach is 
the need to double the number of samples computed in each 
dimension.  For 3D data sets, this is a factor of eight, which 
can lead to memory issues.  A solution is to use a smaller 
oversampling factor along with an optimized kernel [6].  This 
provides a continuous tradeoff between computation and 
memory constraints, and allows very high fidelity 
reconstructions with oversampling factors as small as 1.25.

Density Correction  The other issue is the fact that the 
density of the samples generally varies with non-Cartesian 
acquisitions.  Some spatial frequencies are overrepresented 
in the data, and if not corrected, this will produce artifacts.  
The best known example is the rho filter from projection 
reconstruction.  Some correction is required for almost any 
acquisition method other than conventional spin warp. There 
are many different approaches. For projection reconstruction 
there are analytical expressions.  For others, the density can 
be estimated based on an analytical or numerical model.  
One effective method is the Voronoi diagram, which is part of 
Matlab.  This assigns an area to each sample, that can be 
used as the density correction factor.  An example for a spiral 
trajectory is shown in Fig. 7.

Examples A sequence of reconstructions is shown in Figs. 
8-11 for a simple spiral acquisition.  With a simple 1X FOV 
with and without density correction is shown in Fig. 8. Without 
density correction, low frequency artifacts dominate. With 
density correction, aliasing artifacts remain. Increasing the 
oversampling factor by 2 corresponds to doubling the 
reconstruction FOV.  A 2X reconstruction and the central FOV 
are shown in Fig. 9.  This provides a much cleaner 
reconstruction.  Correcting for the apodization gives a much 
more uniform reconstruction, shown in Fig. 10.  The same 
image quality can be obtained with much less memory, but 
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Fig. 5 For a single lobed gridding kernel  
apodization and aliasing can be traded off, 
but not eliminated.
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Fig.6 Reconstructing on a more finely 
sampled Cartesian grid moves the sampling 
replicas further out, reducing aliasing.
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Fig. 7 Spiral trajectory and its Voronoi 
diagram.  This assigns an area to each 
sample,  which is an estimate of density 
correction factor.
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Figure 1: Simple 1X gridding reconstruction. The predominant low frequency artifact is due to
oversampling of the low spatial frequencies by the spiral acquisition.

has twice as many samples as in the 1X case. The most notable effect of using a kernel that is
twice too small shows up in the next part. A very small kernel is essentially an impulse, and hence
needs no deapodization correction. This also will allow more aliased energy from the sidelobes.
However, even a poor kernel on a 2X grid works well, so the differences are not that apparent
from this example.

The specific changes are in the part of grid1.m that computes the triangular kernel

% compute weighting for triangular kernel

kwx = max(1-abs(nx-nxt),0);

kwy = max(1-abs(ny-nyt),0);

This should to be replaced with

% compute weighting for triangular kernel on 2X grid

kwx = max(1-0.5

*

abs(nx-nxt),0);

kwy = max(1-0.5

*

abs(ny-nyt),0);

so that the kernel extends ± 2 samples on the 2X grid.

3. Deapodization Correction The kernel we are using is a separable triangle function in k
x

and
k

y

. Compute the apodization produced by this kernel for the 2X oversampled reconstruction, and
divide it out of the reconstructed image. Plot a cross-section through the phantom before and after
correction. Display your corrected reconstruction.
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Figure 2: Simple gridding reconstruction with density precompensation. The low-frequency arti-
fact has been corrected, but significant aliasing is apparent.

Solution The first point to note is that since we are using a 2X grid, there isn’t a tremendous
amount of apodization to correct.

There are several alternatives for computing the deapodization function. Since the kernel is
separable, we’ll just consider the x axis. The kernel is a triangle function in k-space. The apodiza-
tion function is then the transform of the triangle ⇤(k

x

/�k
x

), which is a sinc

2
(x/FOV ) in each

axis. Another alternative is to consider the values of the sampled triangle kernel, and explictily
compute its transform. A triangle centered on DC has only three non-zeros samples, a delta at the
origin, and two deltas of amplitude 0.5 at ± one k-space sample on the 2X grid,

C(k
x

) = 0.5�(k
x

/2�k
x

+ 1) + �(k
x

/2�k
x

) + 0.5�(k
x

/2�k
x

� 1).

The Fourier transform of this is
c(x) = 1 + cos(⇡x/FOV ).

This could just as easily be computed numerically with a DFT. Images comparing these deapodiza-
tion functions are shown in Fig. 4, and cross-sectional plots through the middle of the phantom in
Fig. 5. The sinc

2
(x/FOV ) deapodization is quite acccurate. The (1+cos(⇡x/FOV )) deapodization

function is close, but leaves a little apodization uncorrected.
If you used a kernel that was too small (a common problem), your cross section plots will be

quite flat even before deapodization. In this case, applying a deapodization function will cause
the edges of the image to be enhanced.

4. Improved Kernel Many kernels work well on a 2X grid. One of the most widely used kernels
is the Kaiser-Bessel window. It’s shape is dependent on a single parameter �, which makes it easy
to describe. Also, there is an analytic expression for the inverse transform that is required for the

Fig 8 A simple 1X gridding reconstruction 
without (left) and with (right) density 
correction. Significant aliasing artifacts 
remain.
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more computation, using a 1.25X oversampling factor. This is 
shown in Fig. 11.

Extensions  So far we have only been concerned with the 
image reconstruction problem, where we have the non-
uniformly spaced k-space data and we want the 
reconstructed image.  Another important NUFFT problem is 
the inverse of this, where we have the Cartesian sampled 
image data, and we want to calculate the non-uniform k-
space data.  This is often called inverse gridding, and is 
important for iterative reconstruction such as non-Cartesian 
SENSE [7] or SPIRiT [8].  Inverse gridding proceeds in the 
reverse order as gridding.  The image data is first pre-
emphasized to correct for the later convolution in spatial 
frequency.  The data is then transformed to spatial 
frequency, convolved with the gridding kernel, and 
resampled on the non-uniform sample points.  Because the 
initial image data is uniform, no density correction is 
required.  This is a significant simplification.  

All of the examples we have considered are for 2D images, 
but the same ideas work for 3D spatial data, and for 4D 
spatial and temporal data.  Typically the gridding kernels are 
designed to be separable (the product of 1D kernels) to 
make the analysis easier, but it is also possible to design 
kernels explicitly for higher dimensions.
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Figure 3: Reconstruction using a 2X grid, showing the full 2X reconstruction FOV (left) and the
central 1X FOV (right). The aliasing artifacts have been significantly suppressed.

deapodization function. Modify your gridding routine to use the Kaiser-Bessel kernel, given a
value of �, and a kernel width. Use the expressions from the Beatty paper.

Reconstruct the data set rt spiral 03.mat. Fully correct for apodization, based on the an-
alytic expression in the paper. Assume a width of 5 grid samples on the 2X grid, and choose the
optimal value of � from Eq. 5 of the paper (which is listed in Table III). As a reality check, the
kernel should look like Fig. 6. The function I0(x) used in computing the kernel is the zero order
modified Bessel function of the first kind, and is implemented in matlab as besseli(0, x).

You will want to pre-compute the kernel. Assume that we will allow the maximum error due
to kernel sampling to be 10

�3, choose either nearest neighbor or linear interpolation for the kernel,
and choose an appropriate kernel sampling density.

Display images of the full 2X FOV, and the central 1X FOV that would normally be displayed.
Also, plot a cross section through the middle of the phantom to demonstrate that the deapodiza-
tion is correct.

Solution We first need to compute the kernel. The optimum � for the Kaiser-Bessel kernel is
11.44, using the expressions from the Beatty paper. The result is plotted in Fig. 6, which was given
in the assignment.

I used nearest neighbor interpolation for the kernel, with an oversampling factor of 455. This
results in a reasonable length array to look the kernel samples up from, and a simple implementa-
tion. A kernel oversampling factor of only 10 would be sufficient for linear interpolation, but the
implementation would be more complex. A final alternative is simply to compute the kernel for
each sample. This would be slower.

The only difficulty in the implementation is to make sure that the loops over the kernel samples
has the proper ranges. It should go from +/� half the kernel width on the 2X grid.

The reconstruction for the 2X FOV, and the central 1X FOV shown in Figs. 7. The cross section

Fig 9 A 2X gridding reconstruction showing 
the full 2X FOV (left) and the centeral FOV 
(right). The apodization has not been 
corrected.
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Figure 4: Comparison of no apodization compensation (top), compensation for sinc

2
(x/FOV ), and

compensation for (1 + cos(⇡x/FOV )).

Fig 10 A 2X gridding reconstruction showing 
the full 2X FOV (left) and the central FOV 
(right).
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Figure 8: Reconstruction using the optimum Kaiser-Bessel kernel on a 1.25x grid, using a 6 sample
kernel
.

Display the resulting pre-density compensated image. Plot a cross-section through the middle
of each image to compare the two methods. Which produces a more accurate reconstruction? Note
that the backround inside the circular ring of the phantom has a DC level of 20% of the peak, and
is not zero (i.e., this is not an artifact!).

Note: There are a few streaks in the reconstruction of this data set that may not go away. These
are subtle, but still noticeable.

Solution The reconstruction using a post-compensation density correction is shown in Fig. 10,
left. The reconstruction using pre-compensation by the Voronoi density estimate is also shown,
center. Cross-section plots, right, show that the Voronoi density estimate is more accurate.

The key issue with computing the Voronoi density is what to do with the values at the edges of
k-space, where the areas become large or infinite. The infinite values must be suppressed to get any
reconstruction at all. There are also be unreasonably large values. If these are not suppressed, the
result is very large structured noise. The question is, what value to assign to these edge samples
in k-space. One approach is to enclose the trajectory in a circle. Another approach is to zero out
the samples that are infinite or large, but this wastes hard-earned data, and reduces resolution. A
third approach is to artificially extend the trajectory. A fourth approach, taken here, is to limit the
Voronoi areas based on knowledge of the trajectory.

For the rt spiral.mat data the trajectory of question 1, the trajectory has reached the con-
stant velocity regime. The samples are then spaced by 1/FOV along the trajectory, and between
spirals. We can then limit the Voronoi area to (1/128)

2, since k-space is scaled to go from ± 0.5
normalized cycles/cm. For the var dens.mat data of this question, the gradient amplitude, and
hence the k-space velocity, is still increasing at the end of the trajectory, so the samples are closer
than 1/FOV along the trajectory, but still 1/FOV between interleaves. What I’ve done here is
simply use the density for the last fully enclosed sample, and carried that forward to the end of
the waveform.

Fig 11 A 1.25X gridding reconstruction 
showing the full 1.25X FOV (left) and the 
central FOV (right). This shows a similar 
image quality to the 2X FOV reconstruction 
while requiring much less memory.
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