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Introduction Typically MRI data is collected on in a
rectilinear, or Cartesian, sampling pattern. Image
reconstruction can then be performed with a simple 2D (or
3D) discrete Fourier transform. However, there is a long
history of acquisition methods using non-Cartesian sampling
patterns, going back to the very beginning of MRI. These
include spiral and radial acquisition methods as shown in
Fig. 1. There are many others, as well as 3D extensions.
These require a more sophisticated reconstruction methods,
and have been a major area of research in MRI. In this
presentation the basic ideas and technical issues involved
with these reconstruction methods will be described.

Problem Statement There are several related problems
here. The fundamental problem is that we have non-
uniformly spaced samples in the spatial frequency domain,
and we want to generate uniformly space samples in the
image domain. An initial interpolation in the frequency
domain is followed by a Fourier transform. This presents
both problems and opportunities. Interpolation methods that
would be suitable in the image domain produce significant
artifacts after the transform. However, some of these are
easily corrected, and this allows very simple interpolators to
be used provided they are designed with the subsequent
transform in mind.

The basic problem is illustrated in Fig. 2 for two spokes of a
radial acquisition. We would like to determine the value of
the Cartesian samples from the adjacent samples from the
radial acquisition. There are several approaches we could
use. Here we will focus on a class of solutions that
approach the problem convolving the acquired data with a
kernel, and then resample the data onto the Cartesian grid.
This is illustrated in Fig. 3. After the data has been
resampled, a 2D DFT takes the data to the image domain.
These approaches are generally known as “gridding”
reconstructions, and are a special case of the non-uniform
FFT (NUFFT). The NUFFT includes many different
variations, depending on whether the source domain,
destination domain, or both, are non-uniform, and how the
kernel is designed.

Gridding Kernels The initial paper that started the interest in
gridding was by O’Sullivan [1], who was motivated by sinc
interpolation. The issues with this are shown in Fig. 4. The
convolution with the windowed sinc corresponds to
apodization in the image domain, as well as aliasing from the
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a) Spiral b) Projection
Fig. 1 Spiral and projection (radial) are the
most widely used non-Cartesian sampling
patterns, although there are many others.

Fig. 2 Interpolating Cartesian data points
from samples of a radial acquisition.
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Fig. 4 A windowed sinc interpolation in
spatial frequency results in aliasing in the
image domain.



adjacent sampling replicas. This can be minimized by using
a larger kernel to contain these effects to the edge of the
FOV, but this is expensive in computation time. At the time
of ref. [1], this was a major concern. The solution was to
use a very simple single lobed gridding kernel. The problem
this presents is shown in Fig. 5. The amplitude of the
apodization is equal to the amplitude of the aliased signal
from the next sampling replica at the FOV/2. The solution
O’Sullivan proposed was to sample more finely in spatial
frequency to move the sampling replicas out, and provide
room for a transition band. This is shown in Fig. 6.

Originally this oversampling factor chosen as 2, and this
works remarkably well for almost any reasonable kernel.
Aliasing is small, and the apodization can be corrected by
dividing by the transform of the gridding kernel. In Jackson
[2] several kernels were studied, and an optimized Kaiser-
Bessel kernel was described. This has been widely used ever
since. Several other kernels have been described, including
a Gaussian [3] (from the NUFFT literature) and optimized
kernels [4,5]. One of the major limitations of this approach is
the need to double the number of samples computed in each
dimension. For 3D data sets, this is a factor of eight, which
can lead to memory issues. A solution is to use a smaller
oversampling factor along with an optimized kernel [6]. This
provides a continuous tradeoff between computation and
memory constraints, and allows very high fidelity
reconstructions with oversampling factors as small as 1.25.

Density Correction The other issue is the fact that the
density of the samples generally varies with non-Cartesian
acquisitions. Some spatial frequencies are overrepresented
in the data, and if not corrected, this will produce artifacts.
The best known example is the rho filter from projection
reconstruction. Some correction is required for almost any
acquisition method other than conventional spin warp. There
are many different approaches. For projection reconstruction
there are analytical expressions. For others, the density can
be estimated based on an analytical or numerical model.
One effective method is the Voronoi diagram, which is part of
Matlab. This assigns an area to each sample, that can be
used as the density correction factor. An example for a spiral
trajectory is shown in Fig. 7.

Examples A sequence of reconstructions is shown in Figs.
8-11 for a simple spiral acquisition. With a simple 1X FOV
with and without density correction is shown in Fig. 8. Without
density correction, low frequency artifacts dominate. With
density correction, aliasing artifacts remain. Increasing the
oversampling factor by 2 corresponds to doubling the
reconstruction FOV. A 2X reconstruction and the central FOV
are shown in Fig. 9. This provides a much cleaner
reconstruction. Correcting for the apodization gives a much
more uniform reconstruction, shown in Fig. 10. The same
image quality can be obtained with much less memory, but
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Fig. 5 For a single lobed gridding kernel
apodization and aliasing can be traded off,
but not eliminated.
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Fig.6 Reconstructing on a more finely
sampled Cartesian grid moves the sampling
replicas further out, reducing aliasing.
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Fig. 7 Spiral trajectory and its Voronoi
diagram. This assigns an area to each
sample, which is an estimate of density
correction factor.
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Fig 8 A simple 1X gridding reconstruction
without (left) and with (right) density
correction. Significant aliasing artifacts
remain.



more computation, using a 1.25X oversampling factor. This is
shown in Fig. 11.

Extensions So far we have only been concerned with the
image reconstruction problem, where we have the non-
uniformly spaced k-space data and we want the
reconstructed image. Another important NUFFT problem is
the inverse of this, where we have the Cartesian sampled
image data, and we want to calculate the non-uniform k-
space data. This is often called inverse gridding, and is
important for iterative reconstruction such as non-Cartesian
SENSE [7] or SPIRIT [8]. Inverse gridding proceeds in the
reverse order as gridding. The image data is first pre-
emphasized to correct for the later convolution in spatial
frequency. The data is then transformed to spatial
frequency, convolved with the gridding kernel, and
resampled on the non-uniform sample points. Because the
initial image data is uniform, no density correction is
required. This is a significant simplification.

All of the examples we have considered are for 2D images,
but the same ideas work for 3D spatial data, and for 4D
spatial and temporal data. Typically the gridding kernels are
designed to be separable (the product of 1D kernels) to
make the analysis easier, but it is also possible to design
kernels explicitly for higher dimensions.
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Fig 9 A 2X gridding reconstruction showing
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(right).

Fig 11 A 1.25X gridding reconstruction
showing the full 1.25X FOV (left) and the
central FOV (right). This shows a similar
image quality to the 2X FOV reconstruction
while requiring much less memory.
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