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Motion during Cardiovascular and Body M RI

Clinical MRI protocols are the result of a tradé4doétween spatial and/or temporal resolution, digmanoise
ratio (SNR), contrast and acquisition duration. Tateer is often the limiting factor in MRI of mawj organs such as in
cardiovascular and body imaging. This is becausgcal protocols most often deal with motion thrbugardiac
synchronization (e.g. using the ECG) and patienpeaation (breath-holding). As a result a sequahogild not exceed
20-30 sec, which implies decreasing either resmbtSNR or contrast. Acceleration methods suchaasllpl imaging
and compressed sensing can minimize the loss bwtdtill intrinsically lower the SNR, at least byactorvR with R
the acceleration factor. To improve image qualitsttfer the only (generally applicable) alternatisgherefore to get
rid of the breath-hold constraint. This implies deping methods for perfect management of patieotian.
Respiratory synchronization (e.g. using navigatoas) be used but is difficult due to organs' pdsdilifting over long
periods of time (typically 5 to 15 min) and rel&dy inefficient due to rejection of large amountgslata.

Motion correction is an alternative solution. Presiive motion correction should be used whenevssipte
because it better preserves the spin history. Hewi\is limited to affine motion correction. This because spatial
encoding in MRI uses spatially linear gradientgréfiore only linear changes of the coordinate systan be achieved
by modifying the gradient and radiofrequency (REyveforms in real-time. Another limitation of prespive methods
is the assumption that the spatial variations Thesensitivity map are much smaller than motiogeAeral description
of motion using “elastic” displacements (also tedmeon-affine or non-rigid) is more realistic forpresenting
breathing or cardiac-induced motion for instancet B is also more difficult to deal with becausgit necessitates
dedicated image reconstruction techniques ; i§ tkescription of motion requires more parameterd toese
parameters are more difficult to estimate.

Assumptions about Motion

In this course we will focus on reconstruction noeth aimed at correcting for general motion (pogsitzn-
rigid) during MRI acquisition.

We will assume that motion between the RF excitatiod the sampling of k-space data can be negledtbdn this

holds, motion can be considered to occur betweerstitcessive phase encoding steps and thereforehenkpatial
encoding process is affected, resulting in ghosing blurring artifacts (1). Such motion is oftennted inter-view (as
opposed to intra-view). It should be noted thas thésumption is not always valid. For instance fiastion during

sequences such as RARE or diffusion-weighted intagirlikely to cause signal dropouts. Such situetishould first
be handled through efficient synchronization, segaedesign optimizations (e.g. gradient momentimgjll and/or

prospective correction techniques, which may ultelyabe combined with the reconstruction methodscdbed

hereafter.

More generally speaking, it will be assumed thata@ion-corrected image does exist, which meanstheat
exists a reference motion state from which any omostate can be derived by a spatial deformatiothefimaged
organs/tissues (and only by a spatial deformatibmjerms of physics, this assumption can be thboflas a signal
conservation rule (the signal being what is "sd@nthe imaging system), analogous to mass consenvatherefore
large through-plane or out-of-volume motion, costrahanges during the course of the sequence amgebaof the
magnetization due to spin history effects shouldréated carefully. This assumption should alsinterpreted in terms
of physiology. For instance, phase-contrast cartM&t during free breathing may use data from ddferrespiratory
motion states which correspond to different velesitdue to cardiac-respiratory interactions. Tleeefthose
assumptions should always be kept in mind andprégeed.

General Framework for M otion-Compensated | mage Reconstruction
Forward Acquisition Model
Under these assumptions MR image reconstructiaigénpresence of non-rigid inter-view motion hasrbee

described and demonstrated in (2,3). Related wak extensions of this framework can be found in1@)-
Mathematically it consists of solving an inverselgem of the form :
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s = E p,. (1]

Here p, denotes the unknown (static) imaged subject aaraitrary timet, (reference motion state of the
subject) and is represented by a vectoivgf, = N,N, N, elements, withW,, N, and N, the size of the image in
frequency, phase and slice direction respectivVidlg k-space data vectoiis of lengthN,., = N.Ney Ny, With N, the
number of excitations (number of acquisitions affek-space view) an, the number of coil receivers. The operator
E describes the motion-corrupted MRI acquisitiongess and is aN.,XN,,, matrix further described by:
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The matrixE is composed of vertical blocks, each of them anting for one coil receiver € {1...N.} and
one motion stater € {1... M} ; T,,, is an image warping operator that deforms the arfagm its reference motion state
to them!™ motion state S, is the sensitivity weighting operator of th&coil (diagonal operator with sensitivity values
on the diagonal) F is the Fourier transformation operatdi,, is the sampling operator that selects k-spacettatare
acquired while the subject is in the" motion state (in case of non-Cartesian sampjpgwould be an interpolation
operator). ExcepF, all matrices composing are sparse. Specifically, eath matrix is an interpolation operator. For
instance, using a linear interpolation kernel v8fb images means thd}, is computing the intensity value of each
voxel of the deformed image as a linear combinatibd® = 8 voxels from the reference image, yieldi@gon-zero
elements per row iff,,.

In the simplest implementation the motion states simply describe the subject’'s mostates at physical
times corresponding to the k-space view orderinga Imore efficient implementation k-space viewsegponding to
similar motion states (e.g. as assessed by extsemsiors or navigators) are grouped and considerbd part of the
same motion state (4).

Solving the Linear System

Equations 1 and 2 define a large-scale linearbaige system of equations. It is generally solvathg a
matrix-free solver (i.e. a solver which does najuiee theE matrix to be stored explicitly) such as the coajieg
gradient, GMRES (generalized minimal residual) @QR (least squares). Some of these solvers onlyatpen
square matrices, in which case it is necessargrta the equivalent system:

EME p, = Els, (3]

whereE" is the Hermitian transpose Bf By constructionEE is square and Hermitian symmetric. Moreover ifds
full rank, E¥E is positive-definite which guarantees convergeiocethe conjugate gradient. It is important to tise
actual mathematical transpo&& rather than an approximate, especially for Thesparse matrices (for non-rigid
motion this is not the same as estimating the sevéransformation) because left-multiplying by anwaother thang*
may worsen the condition number of the system.

In practice the system is ill-conditioned. One oeafor that is possible errors in the motion openat(and
sensitivity maps). Another reason is the possibis lof information due to rotational motion: anrexie example
would be a two-shot acquisition, with a 90° rotataf the object between the two shots ; this waaldse large areas of
k-space to be left unsampled.

Methods for improving the conditioning of the sysataclude (3): i) usindV,, > 1 (typically N,, = 3 to 4) so
that each k-space data is acquired at differend@en) motion states, thus adding new linearly irthelent data to the
system ; ii) using additional constraints such éhdnov regularization (i.e. inverting”E + 1 Id instead ofE"E ).
This framework has also been used in combinatiah wompressed sensing (10) which may also helpirgpl¥-
conditioned systems by promoting sparse solutions.

Correlated noise between receiver channels canabdldéd before the reconstruction by creating auairt
perfectly decorrelated set of channels (7,13). This be done by forming appropriate linear comimnat (derived
from the noise covariance matrix) of the k-spaced sensitivity maps. Therefore it is not necesgarpadd noise
covariance matrices in the equations.

Note: Assumptions about B, and B, Fields

In this framework it is assumed that tBg and B, fields are not affected by motion. Regarding theeption
B, fields (i.e. the sensitivity maps), this meang tha motion of the coil receiver itself and cabtling changes are
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neglected. However changes in sensitivity "seenmying voxels are taken into account due to théianwmperators
T,, being applied before sensitivity weighting in #eguisition model (3).

For some applications the assumption of st&tjcand B, fields may not be true. One example is MR
thermometry based on the proton resonance frequshifly which has been reported to be sensitive remathing-
induced phase changes (14,15). Calibration methagts been proposed for measuring time-varying fieftps that
can be used for correcting such phase changes isdkgp tables or model-based methods (16). Thmdveork
described here might be extended by adding vargingnd/orB; maps corresponding to each motion state in the
model.

Motion-Compensated Averaging

A particular situation occurs when real-time inmmgis used in combination with a large number afitexions
(N., > 1). Here motion during the sampling of a single @ally undersampled) k-space may be neglectedridssef
images can be reconstructed with parallel imagimigt dynamic imaging techniques without motiotifacts but with
low SNR. Non-rigid image registration is then udedalign all frames. After registration, averagiisgperformed to
increase SNR without introducing significant motiarifacts (unlike conventional averaging). Thisastgy has been
demonstrated in (17-19). It has also been combimitid the aforementioned matrix framework in orderreduce
residual motion artifacts further (12,20).

Motion-Compensated Dynamic MRI

Another interesting scenario is dynamic imagingm® applications, like cardiac cine imaging, ainmzging
motion. It has been proposed to model and searcimétion between frames (21) rather than searcfiinghanges in
pixel intensities as it is usually done in k-t medh. Other applications, like first pass perfusioraging, aim at
imaging a contrast uptake and consider motion astifact. In such cases it is possible to extdmdacquisition model
in Eq. [1] with a signal model (e.g. a B-spline reddescribing contrast uptake (8).

Compressed-sensing based dynamic MRI, namelythdttk-t FOCUSS method, has also been extendedawith
motion estimation and compensation scheme (22).idd®is to estimate and compensate frame-to-frantéon using
image registration techniques so that only thedtediimage needs to be encoded (the differencedestthe registered
images becomes sparser). This approach motiondes ghown to help encoding the dynamic scene nificeently.
Another application of this idea has been demotestrin (10) using an extended version of the metiompensated
reconstruction framework accounting for dynamic poessed sensing acquisition.

Estimating M otion

The main difficulty in motion-compensated reconstian is to obtain accurate estimates of the tiansétion
matricesT,,,. Various approaches have been described, dependitige pulse sequence used, the type of motion and
the desired application.

Image Registration

In motion-compensated averaging, non-rigid imaggstration techniques have been used in ordestimate
displacement fields directly from real-time imaggiss (23,24). With certain sampling schemes sscRROPELLER
(25) or golden angle ratio radial sampling (26} lesolution images can be extracted corresportdiegch shot in the
acquisition; motion can be extracted from such dataspace domain using Fourier properties ohaftiransformation
(in case of affine motion) or by registration oétlow resolution data in image domain (27). Imageigators (i.e. 2D
navigators) have also been used (7) in combinatitnnon-rigid registration (28).

Direct Motion Estimation from Tracking Devices or Navigators

If rigid motion is assumed, many techniques haveided for deriving motion parameters, e.g. usingresl
tracking devices (29), image navigators (30), afhitavigators (31) or so-called butterfly navigat¢82). Some of
them have been used for guiding motion-compensaiashstruction algorithms. So far these have beed mainly in
head applications but they might be useful for pitigans as well. When using coil arrays with gdanumber of
receivers, analyzing motion independently from eateiver channel provides rigid motion parametersesponding
to localized portions of the field-of-view (32).

Motion Models

In order to ease the estimation of (possibly ngidjimotion, motion models have been proposed.idée is
to use the pseudo-periodicity of certain types ofiam by mapping the motion parameters (eitheneffparameters or
local pixelwise translations) to certain motion ritoring signals. This approach has proved partitylaseful in MRI
and many other modalities for modeling, correctimgoredicting motion (33), especially for respirgtonotion. It has
been used in particular for MR prospective motiorrection (34,35). Respiratory and cardiac motiadais have also
been constructed from external sensors (9,36) dimofurespiratory belts and/or ECG derived signaftsmultiple-coil
self-navigating techniques (6,32).
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Searching for Motion Parameters that minimize a Cost Function

Motion parameters can also be estimated direatiy fthe motion-corrupted k-space data.

If motion parameters are applied to a given k-spae@/shot (e.g. by a phase ramp for a translatitmig will
affect the resulting image. A metric can be defifmdquantifying image quality (often based on imamtropy, image-
gradient entropy or image gradient norm) and seérgcfor the motion parameters, for each k-spacevigiigot, that
minimize this metric (37). This approach is oftemed autofocussing in the literature (37-43,32né&3ally, authors
have applied the motion correction directly in lasp domain, thus not explicitly solving for theelar system in Eq.
[1]. The resulting motion-corrected image is therefthe result of an empirical inversion of Eq. (tather than using
the mathematical inverse) which may not yield atino@l solution as explained in (2). Autofocussinghwadditional
constraints about motion has been proposed sahtbadolution follows a known motion path in the g¢irdimension
(e.g. known from navigators), which allows pixelevisanslations (i.e. non-rigid motion) to be optied (32).

The norm of the residual reconstruction error Has deen used as a metric (4). The gradient of dbst
function is easily expressed as a function of thter@ated image gradient and the non-rigid displaa#nerror (using
the optic flow equation). The choice of this metitows both the image and the motion to be op&aipintly from
the corrupted k-space data using an alternatinigh@gation procedure. Such a reconstruction strateggrmed GRICS
in the literature (4,6,8,9,11). In GRICS externahsors and/or navigator data can be used as drsigmals for a
motion model that allows non-rigid displacements.

Similar approaches to GRICS have been describ&Eihreconstruction (44,45) for jointly reconstragtithe
image and the motion. In principle this strategy b& applied to all imaging modalities (46). Sucbhbpems can be
formalized as solving the following joint optimiia problem:

in ||E — 5|24+ u R(a),
(rg){g)ll (@)po — slI* + uR(a) [4]

with py,the motion-corrected image andof vector of parameters used to form g a) matrices (i.ea are
the degrees of freedom for the motion modet)a) is a regularizer that constrains the motion maddde spatially
smooth, e.gR(a) = ||Va||? (4). More advanced regularizers have been propimshading non-quadratic regularizers
(46) and implicit regularization whete is omitted andr described only in vertices of an adaptive mesh. Rioblem
[4] can be solved by alternating optimization amttessitates a multi-resolution implementation ideorto estimate
large displacements.

Outlook

In general image quality in cardiovascular andybbtR| protocols is lower than that obtained in r#agical
or musculoskeletal MRI, especially in terms of sgdatesolution. The constraints imposed by phygaal motion are
among the main reasons for that. Retrospectiveomatrrection methods have therefore the potefttialeducing this
gap. Advanced methods have been described for tohgte@and correcting complex motion like those ociog in
cardiovascular and body MRI. Rigorous mathematigathods can be used for both image reconstructidnnaotion
estimation. Some of these methods are still conipmi@ly expensive, however advances in parallehgoting
architectures is likely to make them more widelgi&@ble in the future. Meanwhile advances in nagaesign and
processing or novel equipments such as MR-comeatildlasound probes (47) might help to constructenamd more
accurate motion models. One of the main challerigethe future may be the estimation of highly iukg or
unpredictable motion such as cardiac arrhythmigeoistalsis.
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