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Objective of the lecture

Skeletal muscle is primarily composed of water, proteins and fat. Water and fat can be found
within or outside the myocytes (i.e. the muscle cells). Therefore, skeletal muscle water can be
further divided into intracellular and extracellular water and skeletal muscle fat can be further
divided into intramyocellular and extramyocellular fat. Magnetic Resonance Imaging (MRI) and
Magnetic Resonance Spectroscopy (MRS) techniques provide unique non-invasive capabilities
to qualitatively probe or directly measure the relative composition of healthy and diseased
skeletal muscle. The relative composition of water in intracellular and extracellular water can be
indirectly probed using T, mapping techniques, whereas the relative composition of fat in
intracellular and extracellular fat can be directly measured using 'H MRS techniques. The water-
fat composition of skeletal muscle can be also measured qualitatively using T-wighted imaging
and quantitatively using fat selective imaging or chemical shift-based water-fat separation
techniques. Finally, the presence of proteins and other macromolecules can be indirectly probed
using magnetization transfer techniques.

It would be practically impossible for the present lecture to cover the aforementioned plethora of
MRI and MRS techniques available to image muscle composition. The two most common
patterns of muscle composition changes in diseased skeletal muscle are edema/inflammation
and fat infiltration. Therefore, the present lecture aims to provide an overview of the most widely
used MRI techniques in characterizing alternations in muscle composition associated with
edema/inflammation (i.e. water T, measurements) and fat infiltration (i.e. fat content
measurements). The first part of the lecture will briefly discuss T, mapping techniques. The
second and main part of the lecture will focus on techniques studying water-fat composition (T-
weighted imaging, fat selective imaging and chemical shift-based water-fat separation).

T, mapping

Skeletal muscle T, relaxation measurements have been performed using standard spin-echo
sequences, multi-echo spin-echo sequences (i.e. the Carr-Purcell-Meiboom-Gill (CPMG)
sequence) (1,2) and steady state free precession (SSFP) sequences (3). Skeletal muscle T,
quantification using a multi-echo spin-echo sequence suffers from all the factors confounding T,
mapping using this sequence in other body parts (4,5). These factors include diffusion effects
during the inter-echo spacing, magnetization transfer effects in multi-slice acquisitions and the
occurrence of stimulated echoes, induced by non-ideal slice profiles, B, and B, field
inhomogeneities (6).

For a thorough analysis of the multiple T, relaxation components, acquisitions with a high
number of echoes have been performed. In a study performed at 1.89 T and acquiring 1000
echo times, four T, components were observed with T, relaxation times < 5ms, 21 ms, 39 ms
and 114 ms and relative fractions 11%, 28%, 46% and 11%, respectively (7). The shortest and
longest components have been observed in ex vivo muscle studies, probably corresponding to
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water associated with macromolecules and extracellular water, respectively. The middle T,
components were suggestive of an organization of in vivo intracellular water. In the same study,
using a standard spin-echo acquisition of six echo times a single T, value of 30 ms was reported
(7). Therefore, it is important to emphasize that the T, measured using a mono-exponential
signal decay model in typical acquisitions with a low number of echoes is an apparent relaxation
time including contributions from multiple T, components.

T, mapping has been widely used in different skeletal muscle disease states including muscular
dystrophies (8,9) and muscle denervation (10). The observed increase of skeletal muscle mean
T, value in these diseased states has been in general associated with an increase of relative
fraction of free water in the presence of edema/inflammation. However, it should be pointed out
that the reported T, values using multi-echo spin-echo sequences differ among different studies,
as they are affected by the aforementioned confounding factors and therefore are highly
dependent on the exact parameters of the employed imaging protocol.

Water-fat composition
T;-weighted imaging

Muscle and fat have T relaxation time values of 1400 ms and 360 ms respectively at 3 T. This
large difference in the T, relaxation time between muscle and fat has established T;-weighted
imaging, combined with a fast spin-echo (FSE) or turbo spin-echo (TSE) sequence, as an
efficient imaging technique for qualitative evaluation of fat infiltration in skeletal muscle. Different
qualitative muscle grading scales have been proposed in the literature to assess the degree of
muscle fat infiltration based on T;-weighted images. Examples include the radiological grade
proposed by Goutalier in the context of rotator cuff tendon injuries (11,12) and the neurological
grade proposed by Mercuri in the context of neuromuscular disorders (13). However, the
grading results remain qualitative and have been shown in certain cases to be highly observer-
dependent (14).

Fat selective imaging

Given the limitations of T-weighted imaging, there has been a growing need for establishing a
quantitative and efficient imaging technique for measuring fat content in skeletal muscle.
Schick’s proposal in 2002 to employ fat selective imaging constituted an important advancement
towards quantitative assessment of skeletal muscle fat infiltration (15). The proposed technique
relied on a fat-selective excitation and the use of appropriate reference signal for signal
calibration in order to derive a quantitative fat fraction map (15). Fat selective imaging has been
successfully used to measure fat content and characterize adipose tissue distribution in the
skeletal muscle of diabetic and older patients (16,17). However, the technique remains
inherently sensitive to By field inhomogeneity effects and requires appropriate correction steps
to account for coil profile effects in the required calibration process using a reference signal.

Chemical shift-based water-fat separation

Chemical shift-based water-fat separation techniques address the general issue of the
sensitivity of chemical shift selective imaging to B, field inhomogeneity effects, also encountered
in fat selective imaging. Chemical shift-based water-fat separation techniques excite both water
and fat and acquire data at multiple echo times in a gradient-echo or an asymmetric spin-echo
sequence. The separation of the total measured signal into water and fat components is based
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on the chemical shift difference between the two species. The two-point version of the technique
has been traditionally used in diagnostic imaging for forming in-phase (addition of water and fat
images) and out-of-phase (subtraction of water and fat images) images, by the selection of
appropriate echo times in a two-echo gradient-echo sequence (18). The generalized multi-point
version of the technique in a multi-echo gradient-echo sequence (19,20) has recently gained
considerable interest in the MRI research community, leading to the further development of two-
point and multi-point Dixon techniques (21-23) and the development of the IDEAL (iterative
decomposition of water and fat with echo asymmetry and least-squares estimation) technique
(24,25) .

Chemical shift-based water-fat separation has been emerging into becoming a quantitative tool
for measuring proton-density weighted fat fraction maps in vivo (26,27). Specifically, quantitative
water-fat imaging techniques have shown excellent agreement with single-voxel MRS in
measuring fat content in different body parts (28-30), after consideration of multiple confounding
factors, including main magnetic field inhomogeneity effects (31), the presence of multiple
peaks in the fat spectrum (32,33), T,* effects (32,34), T;-bias effects (32,35) and eddy current
effects (36,37). In the context of quantitative water-fat imaging in skeletal muscle, previous
works have addressed the need for noise efficient correction of T;-bias effects (38) and have
investigated the effect of susceptibility-induced extramyocellular fat resonance shift on the
measured fat fraction (39). Quantitative water-fat imaging has been also combined with image-
processing techniques, exploiting the inherent multi-modal imaging property of water-fat
imaging, in order to segment different fat compartments and study adipose tissue distribution
changes in the extremities (40).

On the application side, quantitative water-fat imaging has been recently applied to quantify fat
infiltration in skeletal muscles affected by muscular dystrophies (6,41,42), in the rotator cuff
muscles of patients with rotator cuff tendon injuries (43), in the spinal muscles of patients with
back pain (44) and in the skeletal muscles of diabetic patients (45,46). Quantitative water-fat
imaging has been also recently compared to qualitative fat infiltration grading schemes used to
characterize skeletal muscle fat infiltration (41,43,45). The latter studies showed a strong
correlation in the fat infiltration description results between the quantitative and qualitative
approaches. In parallel, these comparison studies highlighted the benefits of a quantitative
assessment of muscle fat infiltration using a continuous imaging marker (i.e. the fat fraction)
measured at high spatial resolution. Finally, although most of the already reported results refer
to cross-sectional studies, quantitative water-fat imaging shows great potential for longitudinal
evaluation of muscle fat infiltration changes associated with disease progression, therapy and
interventions.
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