
Figure 1. BLOSM tracks blocks of pixels and exploits 
block low-rank sparsity. A block is tracked through 
time. These temporally related blocks with similar 
spatial contents are gathered together and form a 3D 
cluster. The cluster is rearranged into a 2D matrix 
which has a high spatiotemporal correlation, and SVD 
is applied. Only a few of the singular values have 
significantly higher values than the others, presenting 
matrix low-rank sparsity. 

 
Figure 3. MSE of 10 patient datasets 
reconstructed using different algorithms. 
MSE for BLOSM was greatly reduced 
relative to kt-SLR (*P<0.01 v.s. 
undersampled, kt-SLR and kt-SLR w/ 
MG). Note that MSE was averaged over 
pixels and time points. Less MSE 
improvement for BLOSM compared to 
BLOSM w/o MG was observed since 
motion only happened at a few time 
points and the decrease in error was 
averaged out over time. 
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Figure 2. Example images at one time point from one patient’s perfusion CMR. The heart 
moved at this time point due to respiratory motion. BLOSM (b) outperformed kt-SLR (c). 
Without motion-guidance (d), quality degraded severely in the image with motion. Without 
blocking (e), kt-SLR w/ MG suffered severe over-smoothing due to spatial interpolation. 
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Background: 
Many cardiac MRI (CMR) applications feature dynamic images, in which an object’s signal intensity or position changes over time. Several 
accelerated imaging techniques utilizing k-t undersampling have been proposed which exploit spatiotemporal correlations and use a few 
spatiotemporal basis functions to model dynamic CMR behavior and reconstruct images1,2. However, these algorithms are sensitive to respiratory 
motion and perform poorly when signal intensity, 
object position and object shape change during image 
acquisition. In this study, we propose a novel method 
that divides the images into regions (blocks) and tracks 
the blocks’ motions to exploit increased sparsity within 
the tracked blocks (Block LOw-rank Sparsity with 
Motion guidance or BLOSM). The simplified dynamics 
in the smaller, motion-compensated blocks are more 
accurately described by a limited number of basis 
functions, making the method insensitive to complex 
dynamics. 
Methods: 
In BLOSM, blocks of image pixels are tracked through 
time using motion information extracted from the 
acquired image data. The tracked blocks consist of 
structure-similar and temporally-related objects with 
simplified dynamic complexity. Specifically, a block 
Bxc(t1) ∈ is initiated on the first image m(t1) ∈  with its center at xc. Bxc(t1) is tracked to the 
next image as B{ xc+dxc }(t2) where dxc is the 
displacement of xc using image registration and {} 
takes the integer to avoid spatial interpolation. The 
tracked blocks are gathered as a cluster  ∈

and rearranged to ∈ 	 ∙  for 
singular value decomposition (SVD) to exploit low-rank 
sparsity (Figure 1). 	 has greater sparsity compared to 
the whole image m, because the blocks have a smaller 
scope with decreased spatiotemporal variations, and 
motion-guidance (MG) leads to less motion 
contamination and simplified motion patterns. 
       In this study, we frame the CS problem as: ∗ argmin, ‖ ‖ λ‖Φ ‖ ∗ Φ  represents the block motion tracking operator where 
m is divided into blocks using motion trajectory maps R. ‖∗‖ ∗ is a joint Schatten p-norm that exploits regional low rank and p=0.93. An iterative soft-thresholding algorithm is adopted to solve the CS 
problem4. Overlapped blocks are initiated to avoid gaps and a weighted summation algorithm is used to merge blocks back to images. A coarse-to-
fine strategy, which both shrinks block size and employs more refined registration methods (beginning with rigid registration and finishing with 
affine or non-rigid registration) during CS iteration, is used to track blocks as the algorithm iterates. 
       N=10 human cardiac first-pass datasets (chosen to have prominent respiratory motion) were retrospectively undersampled at an acceleration rate 
of 4 and reconstructed using BLOSM and kt-SLR1, which uses whole image low-rank sparsity without MG. BLOSM without MG and kt-SLR with 
MG were also implemented and compared. Mean square error (MSE) was calculated for quantitative analysis. 
Results: 
BLOSM substantially improved image quality compared to kt-SLR as demonstrated both in images (Fig. 2) and MSE values (Fig. 3). The increase in 
quality was most obvious when respiratory motion occurred. Both the “block” and “motion-guidance” concepts in BLOSM contributed to the 
improvement, which was demonstrated by comparisons to BLOSM w/o MG, kt-SLR w/ MG and kt-SLR. 
Conclusion and Discussions: 
We have developed a novel motion-guided regional sparsity CS algorithm for dynamic MR images which can handle complex dynamics and is 
motion insensitive. Substantial image quality improvement was achieved by using the proposed method BLOSM for rate 4 accelerated cardiac first-
pass perfusion images with respiratory motion. 
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