Numerical simulations of carotid MRI: how accurately can we quantify atherosclerotic plaque components in vivo?

Harm Nieuwstadt¹, Tom Geraedts², Martine Truijman³, Eline Kooi³, Aad van der Lugt¹, Ton van der Steen¹, Jolanda Wentzel¹, Marcel Breeuwer², and Frank Gijsen¹

¹Erasmus MC, Rotterdam, Zuid Holland, Netherlands, ²Philips Healthcare, Best, Noord Brabant, Netherlands, ³Maastricht University Medical Centre, Maastricht, Limburg, Netherlands

BACKGROUND AND PURPOSE: Carotid atherosclerosis is a disease characterized by plaque formation in the carotid bifurcation. Vulnerable plaques, consisting of a large lipid-rich necrotic core (LRNC) separated by a thin fibrous cap (FC) from the lumen, are most prone to rupture and can be visualized *in vivo* by carotid MRI¹. How accurately MRI can quantify plaque components such as thin FC's and LRNC's *in vivo*, remains unknown because of the lack of an accurate ground truth on the sub-millimeter scale. To circumvent this problem, we chose a novel approach by simulating carotid MRI using the open-source package JEMRIS².

METHODS: We simulated an *in vivo* T1W gadolinium contrast enhanced carotid MRI protocol, specifically designed to image FC's. We simulated identical timings, turbo-spin echo factor, acquired in-plane voxel dimensions and k-space filling. A set of 33 ground truth vulnerable plaque geometries derived from cross-sectional histological data from 12 patients were used as 2D sample models for the MRI simulations. Segmentation of carotid lumen, LRNC and outer wall on simulated images was performed by 3 expert MR readers and measurements derived from these segmentations were compared to the ground truth by correlation coefficient (R) and within readers by the intraclass correlation coefficient (ICC).

FC 1 = 0.31

₽ġ

v = 0

0

0.4

0.6

ground truth FC thickness [mm]

0.8

binned mean ± SD

ค

600

500

400 0

300

200

10 I. I. I.O.

[%]

FC thickness

measured

RESULTS: MR readers segmented the lumen with high correlation and excellent agreement with the ground truth (R = 0.996, ICC = 0.99). Total measured vessel wall area correlated well (R = 0.96, ICC = 0.94), but was found to be overestimated by 15%. MR readers were found to systematically under predict LRNC area by -31%, but their measurements correlated well (R = 0.95, ICC = 0.94). Measured FC thickness showed a weak correlation (R = 0.71, ICC = 0.69). FC's smaller than 0.6 mm were on average severely overestimated in thickness by 201 ± 217%, where FC's between 0.6 and 0.9 mm were measured more accurate and slightly underestimated: $-6 \pm 15\%$.

CONCLUSION: We can conclude that *in vivo* MRI can accurately quantify plaques with regard to vessel wall area and LRNC, but that it has limitations for thin FC measurements. This might influence the reliability of *in vivo* MRI for assessing vulnerable plaque rupture risk by quantifying FC thickness.

This research was supported by the Center for Translational Molecular Medicine and the Netherlands Heart Foundation (PARISk).

REFERENCES:

 H.R. Underhill et al. MRI of carotid atherosclerosis: clinical implications and future directions. Nature Reviews in Cardiology 2010;7:165–173.

[2] T. Stöcker et al. High-performance computing MRI simulations. Magnetic Resonance in Medicine 2010;64:186–193.