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Purpose: 4D flow MRI has the potential to provide global quantification of cardiac 
flow [1], yet often suffers from low velocity-to-noise ratio. Since blood flow is 
incompressible, it is approximately divergence-free (div-free). Therefore, most of the 
divergence components in the flow field originate from noise, which can be reduced 
by enforcing the reconstructed flow to be div-free. Several methods were proposed to 
reconstruct div-free flow field from noisy flow data and were shown to be effective 
as a denoising process [2,3,4]. In practice, however, discrete approximation of flow 
near edges cannot be fully captured by strict div-free representation. Enforcing such a 
solution may lead to error propagation throughout the flow field. Here, we aim to 
provide a practical div-free enforcing processing using divergence-free wavelet 
(DFW) that has the following properties: 1) enforce “soft” div-free constraints where 
appropriate 2) multiscale representation 3) adaptive to noise 4) computationally fast. 
In addition, we utilize sparsity of flow data in DFW domain [5] for further denoising 
by performing wavelet shrinkage [6]. 
Theory: DFW is constructed by tensor combinations of a pair of 1D wavelets that 
are related by differentiation following the instructions in [5]. One example is the 
pair of linear and quadratic spline wavelets, which results in DFW functions shown 
in Figure 1. Since DFW separates flow data into div-free and non-div-free 
components in wavelet domain, we propose soft-thresholding DFW coefficients to 
encourage sparsity; in addition, we soft-threshold non-DFW coefficients with a 
higher threshold to softly enforce div-free constraints instead of eliminating all 
divergence. Soft-thresholding non-div-free coefficients allows the flexibility to adjust 
the cutoff so that important non-div-free components, such as those arising near 
edges, persist. Because of the simplicity of the tensor combinations of 1D wavelet 
functions, the procedure of DFW denoising maintains O(N) complexity. 
Methods: To validate the improvement, in-vivo 4D cardiac flow data were acquired 
in 8 patients (20 heart phases, 122-44 slices, mean resolution=1.56x1.56x1.43mm3) 
on a GE 1.5T Signa Scanner. Flow data were extracted from eddy-current corrected 
phase of reconstructed images using L1-SPIRiT [7]. Segmentations were done 
manually on aorta and pulmonary trunk. Net flow rate (volume/time) and regurgitant 
fraction (RF, %) were then calculated for each segmentation. Flow inconsistency was 
defined as the absolute difference between flow rates in the aorta and pulmonary 
trunk and should generally equal to zero for noiseless data. 
Results and Discussion: Both Figure 2 and 3 show significantly improved 
visualization after post-processing. Studies were evenly separated into a group with 
RF less than 5% (mean net flow=2.945 L/min) and a group with RF more than 30% 
(mean net flow=2.212 L/min). For the first group, the average flow inconsistency 
before denoising was 0.395 L/min and after denoising was 0.353 L/min, yielding a 
10.7% improvement. Average change in RF was 0.08%. For the second group, the 
average flow inconsistency before denoising was 1.151 L/min and after denoising 
was 0.926 L/min, yielding a 19.5% improvement. Average change in RF was 1.88%. 
Each processing of a 3D volume ran within half a minute in Matlab on a 2.8GHz 
Core2Duo laptop with 4GB of RAM.  
Conclusion 
DFW denoising was shown to enhance the visual quality of flow data while 
improving quantification of flow at aorta and pulmonary trunk. The improved flow 
consistency and small change in RF suggests that DFW denoising can be safely 
applied on clinical data without distorting quantifications. 
 

Figure 1 2D slice of DFW basis functions: div-free 
(A), non-div-free (B) 
 

 
Figure 2 (in color) Visualization of cardiac flow
magnitudes before denoising (A) with closeup of
segmented aorta slice (B), and after denoising (C)
with closeup of segmented aorta slice (D). 
 

Figure 3 (in color) Vector visualization of axial
cross-section of cardiac flow: acquired data (A),
denoised data (B) 
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