An improved surface coil design for proton decoupled Carbon-13 Magnetic Resonance Spectroscopy

Eulalia Serés Roig¹, Guillaume Donati¹, Martin Meyerspeer², Lijing Xin^{1,3}, Rolf Gruetter^{1,4}, and Arthur W. Magill^{1,2}

¹Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Vaud, Switzerland, ²Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Vienna, Austria, ³Department of Radiology, University of Lausanne, Lausanne, Vaud, Switzerland, ⁴Department of Radiology, Universities of Lausanne and Geneva, Lausanne, Geneva, Switzerland

Introduction Carbon-13 MRS is challenging because of its inherent low sensitivity, due to the low natural abundance and low gyromagnetic ratio of the ${}^{13}C$ -isotope. Detection is further complicated by ${}^{1}H$ - ${}^{13}C$ hetero-nuclear J-coupling, which necessitates RF transmission at the ${}^{1}H$ frequency while receiving the ${}^{13}C$ signal, requiring strong decoupling between the ${}^{13}C$ and ${}^{1}H$ RF channels. Adding traps to the low- γ coils [1,2] makes it possible to construct a probe consisting of a quadrature X pair and a quadrature ¹H pair, with sufficient isolation between channels to allow simultaneous operation at both frequencies [3]. This can be used to improve the SNR at the X frequency by a factor of $\sqrt{2}$ without increasing power deposition at the ¹H frequency. In this abstract we compare the performance of the double-quadrature ¹³C/¹H coil to a standard linear-¹³C quadrature-¹H design [4], using glycogen measurements in the human calf at 7T.

<u>Methods</u> A ¹³C-¹H surface coil was built, combining a quadrature ¹H pair with a quadrature ¹³C pair (Fig. 1). Each coil pair was decoupled by overlapping [4], while isolation between the ¹H and the ¹³C coils was achieved by adding a second-order trap to each ¹³C loop [5]. In order to reduce common modes, bazooka baluns (for ¹H) and LC-traps (for ¹³C) were placed on all coaxial cables [6]. A sphere (\emptyset 7mm) filled with 99% ¹³C-enriched formic acid was placed in the centre of the ¹³C coil as an external reference for in vivo measurements. Coil performance was evaluated on the bench by measuring the full coupling matrices and coil O-factors (unloaded and

Traps sampl Tune/Match 3C 00

Figure 1: Layout of the double-quadrature ¹³C-¹H coil, combining a quadrature ¹H coil and a quadrature ¹³C coil.

S _{ij} /dB	¹ H	^{1}H	¹³ C	¹³ C
297 MHz	0°	90°	0°	90°
$^{1}H 0^{\circ}$	-40	-16	-31	-37
¹ H 90°	-16	-37	-30	-32
$^{13}C 0^{\circ}$	-31	-30	-	-
^{13}C 90°	-37	-32	-	-

S _{ij} /dB	^{1}H	^{1}H	^{13}C	^{13}C
75 MHz	0°	90°	0°	90°
$^{1}\text{H} 0^{\circ}$	-	-	-30	-18
¹ H 90°	-	-	-18	-32
$^{13}C 0^{\circ}$	-30	-18	-58	-14
¹³ C 90°	-18	-32	-14	-43
			1	

Table 1: S-parameters (/dB) at the ¹H channel (297MHz, top) and at the ¹³C channel (75MHz, bottom).

Coil Qu QL Q_U/Q_I $^{1}H 0^{\circ}$ 2.6 90 35 ¹H 90° 34 2.4 82 ¹³C 0° 76 36 2.1 ³C 90° 62 38 1.6

Table 2: Measured quality factors.

be due to uncertainty in the transmit power calibration: if the transmit power is set slightly high for ¹³C excitation, a larger sample volume will fulfill the adiabatic condition and a larger volume will hence be excited. The increased detection sensitivity shown by this probe design is extremely useful for in-vivo ¹³C MRS experiments.

References [1] M.Alecci et al, JMR 2006; [2] A.Dabirzadeh et al, concepts in MR 2009; [3] A.Webb et al, ISMRM 2010; [4] G. Adriany et al 1997; [5] M.Meyerspeer et al, ISMRM 2011; [6] BM.Schaller et al, ISMRM 2011; [7] E.Serés Roig et al, ISMRM 2012; [8] E.Serés Roig et al, ESMRMB 2012.

Acknowledgements Supported by Centre d'Imagerie BioMédicale (CIBM) of the UNIL, UNIGE, HUG, CHUV, EPFL and the Leenaards and Jeantet Foundations.

loaded) with a network analyzer (E5071C, Agilent).

MR experiments were performed on a 7 Tesla human scanner (Siemens Medical Solutions, Erlangen, Germany) to measure glycogen in the human calf. A pulse-acquire sequence was used with an adiabatic half passage excitation pulse; ¹H saturation was applied at 5.5ppm for the generation of NOE and WALTZ-16 decoupling. The NMR protocol was: TR=1s, 256 averages, vector size 2048, acquisition time 102ms, BW 20 kHz, WALTZ-16 decoupling duration 20ms, and NOE (10 pulses, 41ms pulse duration, 6ms pause between pulses). Measurements were performed in a healthy volunteer who gave informed consent according to the procedure approved by the local ethics committee. Quantification of the SNR was performed using Matlab.

<u>Results</u> Isolation between the ¹H and the ¹³C coil was better than -30dB (Table 1). The coil performance (Q_U/Q_L) was 1.6 and 2.1 for the ¹³C loops, and 2.4 and 2.6 for the ¹H loops (Table 2). The glycogen peak was identified at 100.5ppm in measurements from both coils (Fig. 2). The double-quadrature coil provided a signal enhancement of glycogen (100.5ppm), as well as fatty acid (134ppm) and glycerol (63.1/72.8ppm). The SNR enhancement was 1.79 using the double-quadrature-coil relative to the linear coil.

Discussion A quadrature-¹³C/quadrature-¹H surface coil was constructed, and an improvement in glycogen

detection SNR was demonstrated, relative to the standard linear-¹³C/quadrature-¹H probe design. Importantly, this is done without increasing the power deposition on the proton channel. The improvement is slightly above that theoretically predicted. This is thought to

a)

