Transendocardial therapeutic-delivery using real-time MRI guidance

Shashank Sathyanarayana Hegde¹, Steven M Shea^{1,2}, Li Pan^{1,2}, Parag Karmarkar³, Julien Barbot⁴, Klaus J Kirchberg⁴, Fijoy Vadakkumpadan⁵, Jeremy Maurer¹, Judy Cook¹, Natalia Trayanova⁵, Meiyappan Solaiyappan¹, Peter V Johnston⁶, and Dara L Kraitchman¹

¹Radiology, Johns Hopkins University, Baltimore, Maryland, United States, ²Center for Applied Medical Imaging, Siemens Corporation, Corporate Technology, Baltimore, Maryland, United States, ³MRI Interventions, Inc., Memphis, Tennesse, United States, ⁴Center for Applied Medical Imaging, Siemens Corporation, Corporate Technology, Princeton, New Jersey, United States, ⁵Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States, ⁶Cardiology, Johns Hopkins University, Baltimore, Maryland, United States

Audience: Interventionalists and clinicians interested in minimally invasive therapy delivery.

Background: Catheter-based transendocardial injection offers a minimally invasive method to deliver therapeutics to the heart, but conventional X-ray fluoroscopic guidance suffers from poor demarcation of myocardial boundaries and an inability to assess myocardial viability. MRI-guided delivery of therapeutics at 3T offers the potential for more precise therapeutic targeting with superior tissue contrast. We demonstrate transendocardial injection of a prototype therapeutic into the myocardium of a normal swine using real-time MR guidance and a custom active injection catheter.

Methods: A custom, MR- trackable, steerable transendocardial injection catheter (10F diameter, 135 cm long) with four built-in active tracking coils (Fig. 1a) was visualized and tracked using the Interactive Front End (IFE) navigation software in conjunction with a real-time tip-tracking sequence (BEAT_IRTTT¹) running on a Siemens 3T system. The catheter model was built using *a priori* knowledge and real-time coordinates of the tracking coils (Fig. 1b). Three-dimensional (3D) surfaces of the heart chambers (LV, RV) and infarct region were constructed from a breath-hold, multi-slice cine short-axis stack and overlaid within IFE (Fig. 1c). In addition, the distal tracking coil could be used for high resolution myocardial wall visualization, exemplified *ex-vivo* (Fig 1d). Using real-time model guidance, the catheter was navigated to target injection sites and using a nitinol needle, iron oxide-impregnated alginate microbeads (50 μ m diameter, 0.02 mL/injection) were injected into the myocardium. Injections were visualized in real-time (Fig 1e) and delivery success was confirmed using a breath-hold, multi-slice sequence (Fig. 1 f,g).

Results: Left ventricular catheterization and guidance to four target sites in the myocardium was achieved. Confirmation of microbead delivery was possible, but difficult due to the small volume delivered. A potential advantage of the current system is the ability to direct the injection catheter towards the myocardial wall prior to therapeutic injections (Fig. 1d).

Conclusion: A real-time interface with active catheter tip tracking enabled successful 3T MRI-guided transendocardial delivery of a prototype therapeutic to the *in vivo* heart.

Reference: (1) Pan L. et.al, ISMRM 2011, pp. 195. Support: 2011-MSCRFII-0043, Siemens Corporation