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Purpose 
Magnetic resonance thermal imaging (MRTI) has the ability to provide real-time 
treatment monitoring during MR-guided thermal therapies, which can help 
minimize the amount of normal tissue treated and prevent treatments from 
exceeding safety limits [1]. The most frequently used technique for measuring 
temperature, the PRF shift technique, relies on dynamically measuring and 
calculating the phase difference based on a reference phase image acquired before 
heating. Thus, it is easily perturbed by motion, susceptibility gradients, signal loss 
and background field contaminations. In previous studies, the Pennes bioheat 
transfer equation was used as a model for predicting temperature [2,3]. In this 
study, a non-physical model within a static Gaussian system models [4] is used to 
predict temperature with limited a priori temperature information to simulate the 
presence of fully contaminated data during measurement update.  

Materials and Methods 
Instead of modeling the temperature with the Pennes bioheat transfer equation 
that is dependent on multiple bio-thermal parameters such as thermal 
conductivity, perfusion, or optical absorption and scattering, the spatiotemporal 
covariance is modeled. The estimate of the covariance functions are used to make 
predictions for the signal, which includes the first and second order statistics, 
mean and variance. In this way, a portion of the data is used to train the model 
and the phase where heating is located is used as test inputs to compute 
predictions. The training data is used to optimize parameters within the 
covariance function. To assess the accuracy of this method, consecutive time 
points during heating were used to predict the subsequent time point. Both two 
and three consecutive time points were examined. Scale parameters and noise 
variances within the covariance function are optimized by maximizing a Gaussian 
likelihood function. The maximum of the Gaussian posterior distribution gives the 
most probable estimate.  

Results 
Figure 1 shows a magnitude image of a laser induced interstitial thermal therapy 
in human brain and the location of the heating. Following a voxel adjacent to the 
laser fiber over time, a temporal profile of the relative temperature is shown in 
Figure 2a. ). During the main heating (cf. Fig 2a), the actual temperature is plotted 
in blue. The mean ± standard deviation is plotted in red when using only two and 
three previous measurements (Fig 2b-c). During the heating when the temperature 
gradient is at its steepest, the temperature distribution of the actual temperature 
measurement is compared to the predicted distribution for the same time point, 
t=125s (Fig. 3). Line profiles in the x and y directions of the relative temperature 
maps are shown in Figure 4, where they seem to agree on average within 3°C.  

Discussion 
In this study, using 2 or 3 prior temperature measurements, the immediate future 
temperature (n+1) was able to be predicted with good accuracy via a mesh-less 
modeling process. Future work will look at predicting multiple time steps ahead 
as well as cooling. Accelerating the necessary processing time will also be 
investigated. Unlike the Pennes bioheat transfer equation, bio-thermal parameters 
are not needed. The predictive temperature ability shown here may be useful for 
estimating temperature in the presence of corrupted or missing data, providing 
artifact free estimates for control algorithms, or identifying temperature artifacts 
when measurements fall outside the predicted confidence interval, thus facilitating 
other correction schemes.  
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Fig. 1: Magnitude image of human brain undergoing laser interstitial 
thermal therapy 

 

 
Fig. 3: Actual temperature distribution at t = 125s compared to the 
predicted temperature distribution using 2 a priori time points. 
Color bar shows temperature change of the procedure. 
 

 
Fig. 4: Line profiles in the x and y-directions of the temperature 
distribution (cf. Fig 3) comparing actual temperature measurements 
(blue) to predicted temperature measurements (red). 

 

Fig. 2: Temporal profile of 
relative temperature at a 
voxel adjacent to the laser 
fiber (a) with the main 
heating (grey box) plotted 
with 2 a priori time steps (b) 
and 3 a priori time steps (c) 
to train with. .Red is the 
mean ±standard deviation. 
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