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Introduction 
MR guided Laser Induced Thermal Therapy (MRgLITT) for treatment of cancerous 

lesions in brain [1] as well as neurological disease presents an attractive treatment option with  
less morbidity compared to conventional surgical procedures. Multiple post market studies are 
currently on-going for FDA cleared MRgLITT devices.  MRgLITT systems incorporate real-time 
MR temperature imaging (MRTI) and dosimetry to provide real-time feedback, thus making 
MRgLITT procedures safe and feasible. In view of the recent computational progress made in 
medical imaging, significant efforts are ongoing to incorporate predictive prospective computer 
simulation integrated with 3D visualization and assessment of diagnostic and interventional MR 
imaging information.          Figure 1. MRgLITT Setup and MRTI in Brain 

Truly predictive prospective computer modeling requires substantial validation efforts and novel computer modeling techniques that incorporate the uncertainty 
of the input of computer model parameters into the predicted solution. A common method for predictive modeling of the distribution of induced heating in perfused 
tissue is the Pennes bioheat transfer equation (BHTE) [2] solved with a finite element method (FEM) [3]. A difficulty in obtaining accurate results from the BHTE is the 
uncertainty incurred by using assumed constitutive values, such as tissue heat conductivity, and perfusion as well as optical absorption and scattering parameters. Here 
we investigate the use of a stochastic BHTE where temperature dependent constitutive values are described via an assumed probability distribution providing the ability 
to perform uncertainty quantification (UQ) [4] of the output temperature and damage for each location at each time point.  

Statistical methods provided by the UQ techniques provide novel methodologies for modeling the complex bioheat transfer phenomena. In particular, it is well 
known that the constitutive parameters behave nonlinearly with temperature increase and tissue damage. Constitutive parameters that account for damage dependent 
nonlinearities of the perfusion, thermal conductivity, and optical parameters [5] are generally more scarce than the linear counter parts and the variability seen within the 
literature indicates a higher degree of uncertainty within the nonlinear parameters [6]. Within the probabilistic setting of UQ, the range of constitutive nonlinearities may 
be modeled through the uncertainty within the linear UQ problem. This novel modeling techniques facilitates a substantial increase in compute efficiency and maintains 
computer modeling predictability by incorporating the advanced bioheat transfer phenomena. 

Methods 

Retrospective analysis of MRTI data from a clinical MRgLITT procedure in brain was performed.  A 
diagram of the setup is shown in Figure 1. A patient with a recurrent glioblastoma was exposed to a 980-nm 
laser irradiation (4W and 10W for <140s) using a 1 cm diffusing-tip fiber encased in an actively cooled sheath 
(BioTex, Inc, Houston, TX). The catheter was positioned under MR guidance into the right frontal lobe. 
Imaging was performed on a 1.5T whole body scanner (Espree, Siemens Medical Solutions, Erlangen, 
Germany) with an 8-channel, phased-array head coil (Noras MRI Products, GmBH, Germany). Exposures were 
monitored in real-time using the temperature-sensitive proton resonance frequency (PRF) shift technique via a 
gradient spoiled, two-dimensional fast low angle show sequence which generated temperature measurements, 
every 5 sec (TR/TE/FA = 38 ms/20 ms/30°, frequency x phase = 256 x 128, FOV = 26 cm2, BW = 
100Hz/pixel). An uncorrelated Gaussian measurement model was assumed for the PRF-based MR thermal 
image measurements (SNR > 10). Representative MRTI at a time point of maximum heating is shown in oC, 
Figure 1.           Figure 2. Constitutive Paramter Nonlinear Models 

Computer simulations use generalized polynomial chaos (gPC) methods to provide UQ in the output variables variables [4]. Conductivity, perfusion, optical 
absorption, and optical scattering for the linear problem were considered and  uniform random variables were taken from the physically meaningful range of literature 
values [5–7]. Temperature dependent nonlinear parameters for the perfusion and optical absorption were also considered as seen in Figure 2. Computational resources 
were provided by The University of Texas at Austin’s Texas Advanced Computing Center’s supercomputer, Ranger (579.4 TFlops, 123 TB memory). The FEM mesh 
was built in Cubit (Sandia NL). The visualization was created in ParaView (Kitware). The UQ was executed by DAKOTA (Sandia NL).  

Results 
Figure 3 displays spatial profiles comparing experimentally measured temperature 

values and UQ simulations with and without constitutive nonlinearities. The profile 
location is shown in Figure 1. The 95% confidence interval for the linear UQ 
simulation is shown to encompass the nonlinear simulation. The confidence intervals 
of probable temperatures from the model and MRTI are overlapping.  

Discussion  
The variability observed in the nonlinear computer models is seen to be 

encompassed within the linear UQ computer models. Hence within a probabilistic 
sense, the linear UQ simulations may potentially serve as a computationally efficient 
and predictive surrogate to the nonlinear UQ simulations. However, smaller variability 
is seen within the nonlinear UQ simulations. Work on a statistically significant amount 
of patient data is ongoing and is being used to critically evaluate potential prospective 
treatment time decisions from the confidence intervals provide by linear and nonlinear 
UQ simulations.          Figure 3. Spatial Profile 
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