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INTRODUCTION: The SLR method [1] is often known as the “method-of-choice” in 1D RF pulse design. It is desirable to generalize the SLR 
method to design multidimensional RF pulses. However, significant technical difficulties arise in generalizing the SLR method to multi-dimensions, 
largely due to the obstacle in mapping the coefficients of multidimensional polynomials uniquely to an RF pulse [2]. In this work, we present a novel 
approach to generalize the SLR method to multi-dimensions. The multidimensional RF pulse design problem is converted to a series of 1D RF pulse 
design problems, each of which is equivalent to a 1D polynomial design problem that can be solved efficiently using convex optimization.  
METHODS: For simplicity, the proposed method is described for designing a 2D spatially selective RF pulse. Assume that  and  field is 
uniform, and that an “echo-planar” gradient waveform is used as shown in Fig. 1a. The pulse can be decomposed into segments in Fig. 1b. Each 
segment consists of two sequential rotations: a rotation varying along the -axis caused by a  gradient blip, and a rotation varying along the -axis 
caused by an RF subpulse along with an inherently refocused  gradient. For each , the above decomposition presents an interleaved rotation 
synthesis structure that is the same as the 1D SLR method. The 2D RF pulse design problem can then be converted into two sequential 1D 
polynomial design problems: 1) design of the desired rotation of each subpulse to approximate a target excitation pattern; and 2) design of each 
subpulse to approximate the desired rotation determined in step 1).   

To solve the first design problem, a forward and inverse transform (Table 1) are derived to establish a bijective mapping between the desired 
rotation of each subpulse (represented by the Caylay-Klein parameters [1]) and two 1D polynomials. Moreover, the forward transform in (1) is exact, 
and the rotation of each subpulse can be large. The first design problem is therefore equivalent to a 1D polynomial design problem. For each ,  
that is a polynomial of  is designed to approximate the target excitation pattern (a function of ) in a minimax fashion. The resulting 
optimization problem is convex, and can be efficiently solved using a convex optimization solver, e.g., CVX [3]. The polynomial  is then 
designed by spectral factorization [1], and the desired rotation is finally determined using the inverse transform in (2-3). Repeating the above design 
along the -axis, the desired rotation of each subpulse is obtained as a function of , i.e., ,  and , . 

To solve the second design problem, the rotation of each subpulse is converted to two polynomials in (4-5) using the forward SLR transform [1]. 
To design a minimum RF power subpulse, only the polynomial  is designed, and  is determined by spectral factorization in (6). However, by 
doing this, we lose the control of the phase of . That is, an arbitrary pair of  ,  and ,  cannot be approximated simultaneously. Fortunately, 

the phase of the desired rotation ,  is a free parameter in (3), and can be chosen such that as  approximates ,  in (8-9),   determined in 

(6) also approximates ,  in (7). The polynomial  is then designed to approximate the desired rotation ,  in (8-9) in a minimax fashion, 
which also results in a convex optimization problem. The subpulse can be finally determined by the inverse SLR transform [1].  

Given the approximation ripples of the two sequential design problem, the overall ripples of the resulting excitation pattern can be derived based 
on a perturbation analysis (the exact expression is not shown due to space limitation). Explicit tradeoffs among the design parameters can be made in 
a similar way to the 1D SLR method [1]. 

 
Figure 1. a: Proposed pulse b: 
Subpulse that consists of two rotations: / 00 / . 

Table 1. Equations in the first step  Table 2.  Equations in the second step 
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Forward transform:  , ,, ,   (1) 

Inverse transform:  , ,, ,   (2) 

, ,⁄ 0 0⁄  (3) 

RESULTS: The proposed method was used to design a 2D 180o refocusing RF pulse to refocus spins in a rectangular region, and compared with the 
separable design method in [4], which is largely derived based on a similar intuition and essentially assumes the rotation of each subpulse is small. 
The simulated excitation patterns (| | ), are shown in Fig. 2b and Fig. 2c. While the excitation pattern achieved by the method in [4] has notable 
geometric distortions, the excitation pattern achieved by the proposed method approximates the desired one more accurately. Two representative 
excitation profile plots are shown in Fig. 2d and Fig. 2e, where the proposed method shows equal-ripple and much smaller excitation errors.  
CONCLUSION: The SLR method for 1D RF pulse design has been extended to the multidimensional case. The proposed method preserves almost 
all the desirable features of the SLR method in terms of handling the nonlinearity of the Bloch equation and tradeoffs among design parameters and 
computational efficiency.  
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Fig. 2 a:  A 2D refocusing RF pulse design by the 
proposed method (10% passband ripple, 1% 
stopband ripple, the VERSE method [5] is used to 
reduce the peak RF value). b and c: Excitation 
pattern by the method in [4] and the proposed 
method. d and e: Excitation profiles along the x- 
and z-axis (the black-dashed line: the method in [4]; 
the blue-solid line: the proposed method) 

 

4242.Proc. Intl. Soc. Mag. Reson. Med. 21 (2013) 


