Evaluation of correction methods for errors in T2* quantification caused by background gradients Ruitian Song¹, Travis Bevington¹, Brian A Taylor¹, Axel J Krafft¹, Ralf B Loeffler¹, and Claudia M Hillenbrand¹ Radiological Sciences, St Jude Children's Research Hospital, Memphis, Tennessee, United States Introduction: Accurate measurement of T_2^* is of importance for many basic, preclinical, and clinical MR applications. Examples include blood oxygenation level dependent functional (BOLD) imaging [1], super-paramagnetic iron oxide contrast imaging [2], and tissue iron quantification in the brain [3], heart [4], and liver [5]. However, T_2^* -measurement accuracy can be influenced by macroscopic field inhomogeneities (i.e., background gradients) that are introduced by susceptibility changes, e.g. at air-tissue boundaries. Two major approaches have been proposed to correct for the errors in T_2^* -quantification that arise from background gradients: (a) *sinc*-weighted fitting of the signal decay (FIT) [6], and (b) direct measurement of the field ΔB_0 (DMF) [7]. As no formal comparison of both strategies has been performed yet, the pros and cons associated with each technique are unclear as well as which technique should be used for a certain application. Purpose of this work is to compare and evaluate these two methods in phantoms and *in vivo* with specific focus on hepatic imaging. Materials and Methods: The MR signal M acquired by a multi-echo spoiled gradient echo (mGRE) sequence can be expressed as: $M(TE) = d \cdot M_o \cdot exp(-TE/T_2^*) \cdot sinc(\gamma TE G_b d/2)$ [Eq.1] where TE is the echo time, d the slice thickness, and G_b the background gradient caused by field inhomogeneities. When using FIT, G_b is treated as an unknown parameter and T_2^* is obtained by a three parameter fit (T_2^* , M_0 , and G_b) [6]. For DMF, G_b is estimated from B_0 field maps calculated by phase images obtained from the mGRE acquisition; after G_b has been determined, T_2^* is calculated by a two parameter fit (T_2^* and T_2^* is calculated by a two parameter fit (T_2^* and T_2^* is calculated by a two parameter fit (T_2^* and T_2^* is calculated by a two parameter fit (T_2^* and T_2^* is gradient calculation relies on the field information of two neighboring slices. Therefore, no gradient can be determined for the two outmost slices of an image stack [7]. In this study, Autoregressing Moving Average Modeling (ARMA) [8] is used to generate field maps and the resulting G_b maps. All algorithms were implemented in Matlab (MathWorks), and fitting was performed on a voxel-by-voxel basis. *Phantom Scans:* to generate field inhomogeneities caused by air/water boundaries, an empty cuboid bottle (volume T_2^* is calculated by a sealed and glued into a square container (volume T_2^* is distinguished by a two parameters were as follows: T_2^* is a sealed and glued into a square container (volume T_2^* is distinguished by a two parameters were as follows: T_2^* is a sealed and glued into a square container (volume T_2^* is a sealed and glued into a square container (volume T_2^* is a sealed and glued into a square container (volume T_2^* is a sealed and glued into a square container (volume T_2^* is a sealed and glued into a square container (volume T_2^* is a sealed and glued into a square container (volume T_2^* is a sealed and glued into a square container (volu Results and Discussion: Table 1 summarizes the results obtained for the phantom at specific locations ROI 1 & 2 (Fig. 2) and a healthy volunteer (male, age 23y). Phantom Scans: The effect of background gradients was not observed when the ROI was far away from the air/water boundary. In that case (slices 1 & 2 for ROI 1 and slices 1-4 for ROI 2) the uncorrected T2* values were around 20ms. For slice 1, uncorrected and FIT T2* values are very close. Approaching the air/water boundary, uncorrected T2* values decreased (bold), indicating that increasingly stronger background gradients impact the decay. FIT-corrected T2* values were around 20ms (range 18.2-20.7ms) for both ROIs. This indicates that the FIT correction works properly. The DMF algorithm corrected slice 2 pretty well, but showed overcorrection for both ROIs for slice indices approaching the air/water boundary. Slice 7 was placed too close to the empty bottle, so that no T2* map could be calculated with either approach. In Vivo: The last column of Table 1 shows the results obtained for a healthy volunteer. Here, the first slice is close to the lung/liver interface. Steep drops in uncorrected T2* can be seen for the first few slices (bold) because of background gradients caused by the lung/liver boundary. At the center of the liver (slice 7, portal vein level), the uncorrected liver T2* reaches a maximum of 20.3ms. As this is a healthy volunteer, the T2* of liver tissue should not vary strongly within the organ. It therefore seems reasonable to attribute the observed deviation of approximately 50% in liver T2* between slices 1 & 2 and slice 7 to stronger background gradients near the lung/air interface. FIT recovered T₂* to approx. 24-25ms. However, for slice 1 the value could still not be completely corrected. DMF corrected slices 5-7 in the center of the liver well where background gradients are small. However, the DMF correction seemed to deteriorate the closer a slice gets to the lung/liver interface. Fig 1. Phantom with slice positions. Fig 2. ROI locations. Table 1. Summary of T₂* corrections for the phantom and a volunteer | | slice | ROI 1 T2* [ms] | | | ROI 2 T2* [ms] | | | Volunteer T2* [ms] | | | |--|-------|----------------|------|------|----------------|------|------|--------------------|------|------| | | Jilee | Uncorr | FIT | DMF | Uncorr | FIT | DMF | Uncorr | FIT | DMF | | | 1 | 20.0 | 20.5 | - | 20.1 | 20.5 | ==: | 9.9 | 16.9 | 10.5 | | | 2 | 19.4 | 20.2 | 22.5 | 20.4 | 20.6 | 20.8 | 9.3 | 22.5 | 13.6 | | | 3 | 18.8 | 20.2 | 26.6 | 20.4 | 20.8 | 20.5 | 12.5 | 24.9 | 16.5 | | | 4 | 16.9 | 20.0 | 90.9 | 20.2 | 20.7 | 23.5 | 14.0 | 25.8 | 17.0 | | | 5 | 11.6 | 18.4 | 32.7 | 14.5 | 19.1 | 70.0 | 17.5 | 24.4 | 20.1 | | | 6 | 15.0 | 19.3 | | 9.9 | 18.2 | | 18.3 | 25.3 | 20.1 | | | 7 | - | - | | 722 | - | 220 | 20.3 | 28.4 | 20.7 | Conclusion: There is a need for correction of T_2^* values in areas of strong susceptibility changes. By comparing FIT and DMF, we found that FIT worked better in correcting T_2^* . DMF is not very accurate and prone to over- or underestimation. The reason is that the field maps (and the resulting gradient) calculated from phase images represent the magnitude of all three (x,y,z) field components. However, G_b in Eq.[1] is only the gradient component along the z direction. This can cause over- or undercorrection of T_2^* . Our results indicate, that FIT is preferred unless the z component of the magnetic field dominates among the three spatial components. References: [1] Sadowski EA et al. MRI 2010;28:56-64. [2] Dahnke H et al. MRM 2005;53:1202-6. [3] Gelman N et al. Radiology 1999;210:759-67. [4] Hankins J et al. Ped Blood&Cancer 2010;55;495-500. [5] Hankins J et al. Blood 2009;113:4853-5 [6] Fernandez-Seara M et al. MRM 2000;44:358-66. [7] Hernando D et al. MRM 2012;68:830-40. [8] Taylor BA et al. JMRI 2012;35:1125-32.