Evaluation of correction methods for errors in T2* quantification caused by background gradients
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Introduction: Accurate measurement of T,* is of importance for many basic, preclinical, and clinical MR applications. Examples include blood
oxygenation level dependent functional (BOLD) imaging [1], super-paramagnetic iron oxide contrast imaging [2], and tissue iron quantification in
the brain [3], heart [4], and liver [5]. However, T,*-measurement accuracy can be influenced by macroscopic field inhomogeneities (i.e., background
gradients) that are introduced by susceptibility changes, e.g. at air-tissue boundaries. Two major approaches have been proposed to correct for the
errors in Ty*-quantification that arise from background gradients: (a) sinc-weighted fitting of the signal decay (FIT) [6], and (b) direct measurement
of the field AB, (DMF) [7]. As no formal comparison of both strategies has been performed yet, the pros and cons associated with each technique are
unclear as well as which technique should be used for a certain application. Purpose of this work is to compare and evaluate these two methods in
phantoms and in vive with specific focus on hepatic imaging.

Materials and Methods: The MR signal M acquired by a multi-echo spoiled gradient echo (mGRE) sequence can be expressed as:
M(TE)=d"M.- exp(-TE/T,') - sine(y TE G,d/2) [Eq.1] where TE is the echo time, d the slice thickness, and Gy the background gradient caused by
field inhomogeneities. When using FIT, G, is treated as an unknown parameter and T,* is obtained by a three parameter fit (T,*, My, and Gy) [6].
For DMF, Gj, is estimated from B, field maps calculated by phase images obtained from the mGRE acquisition; after G, has been determined, T,* is
calculated by a two parameter fit (T,* and M) [7]. The gradient calculation relies on the field information of two neighboring slices. Therefore, no
gradient can be determined for the two outmost slices of an image stack [7]. In this study, Autoregressing Moving Average Modeling (ARMA) [8] is
used to generate field maps and the resulting G, maps. All algorithms were implemented in Matlab (MathWorks), and fitting was performed on a
voxel-by-voxel basis. Phantom Scans: to generate field inhomogeneities caused by air/water boundaries, an empty cuboid bottle (volume
7.5%7.5x18cm”) was sealed and glued into a square container (volume 20x20x19c¢m’) filled with 8.33mM Gd-doped water (Fig. 1). Images were
acquired on a 1.5T scanner (Siemens Avanto) using an mGRE sequence with 20 echoes. Parameters were as follows: TE;; 0.98ms, echo spacing
1.38ms, TR 200ms, flip angle 25°, FOV 24x30cm, and matrix size 128x104. Seven coronal slices were acquired with a slice thickness and inter slice
gap of 10mm. /n Vivo Scans: hepatic imaging of healthy volunteers was performed on a 3T scanner (Siemens Trio) using the mGRE sequence with
20 echoes in a single breathhold. Acquisition parameters were TE,;;,, 1.73ms, echo spacing 1.29ms, TR 200ms, flip angle 35°, FOV 28.4x35cm, and
matrix size 128x104. Nine transverse slices were acquired, starting from the diaphragm and covering the liver with a slice thickness of 10mm and no
gap. Only the 7 center slices were used for the calculations.

Results and Discussion: Table 1 summarizes the results obtained for the phantom at
specific locations ROI 1 & 2 (Fig. 2) and a healthy volunteer (male, age 23y).
Phantom Scans: The effect of background gradients was not observed when the ROI
was far away from the air/water boundary. In that case (slices 1 & 2 for ROI 1 and
slices 1-4 for ROI 2) the uncorrected T,* values were around 20ms. For slice 1, un-
corrected and FIT T,* values are very close. Approaching the air/water boundary,
uncorrected T,* values decreased (bold), indicating that increasingly stronger back-
ground gradients impact the decay. FIT-corrected T,* values were around 20ms
(range 18.2-20.7ms) for both ROIls. This indicates that the FIT correction works
properly. The DMF algorithm corrected slice 2 pretty well, but showed over-
correction for both ROIs for slice indices approaching the air/water boundary. Slice 7
was placed too close to the empty bottle, so that no T,* map could be calculated with
either approach. /n Vivo: The last column of Table 1 shows the results obtained fora ~ Table 1. Summary ° g roo=cias f"”h o "“""“te"
healthy volunteer. Here, the first slice is close to l}}e lung/liver interface. Steep drops m nm’:rm lﬂ? [m;]m "m':rm ZF? [m;L‘F
in 11|?corrcctcd T5>* can be seen for the first few slices (bold) bcca_usc ol'_background ; 205 — 204 205 STl = g
gradients caused by the lung/liver boundary. At the center of the liver (slice 7, portal

vein level), the uncorrected liver T,* reaches a maximum of 20.3ms. As this is a 19.471520.2° 122,61 120.4'|:20.6 | 20,81 8.3.1) 22,5 1156
healthy volunteer, the T2* of liver tissue should not vary strongly within the organ.
[t therefore seems reasonable to attribute the observed deviation of approximately 50%
in liver T,* between slices 1 & 2 and slice 7 to stronger background gradients near
the lung/air interface. FIT recovered T,>* to approx. 24-25ms. However, for slice 1
the value could still not be completely corrected. DMF corrected slices 5-7 in the
center of the liver well where background gradients are small. However, the DMF
correction seemed to deteriorate the closer a slice gets to the lung/liver interface.
Conclusion: There is a need for correction of T,* values in areas of strong susceptibility changes. By comparing FIT and DMF, we found that FIT
worked better in correcting T,*. DMF is not very accurate and prone to over- or underestimation. The reason is that the field maps (and the resulting
gradient) calculated from phase images represent the magnitude of all three (x,y,z) field components. However, G, in Eq.[1] is only the gradient
component along the z direction. This can cause over- or undercorrection of T,*. Our results indicate, that FIT is preferred unless the z component of
the magnetic field dominates among the three spatial components.
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Fig 1. Phantom with slice positions. Fig 2. ROI locations.
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