Coil combine for conductivity mapping of breast cancer

Jaewook Shin¹, Min Jung Kim², Joonsung Lee¹, Minoh Kim¹, Narae Choi¹, Yoonho Nam¹, and Dong-Hyun Kim¹

¹Electrical and Electronic Engineering, Yonsei University, Seoul, Seodaemun-gu, Korea, ²Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Seodaemun-gu, Korea

Introduction: Phase-based electrical property tomography (EPT)¹ was recently proposed which uses only RF (radio frequency) transceive phase (φ_{\pm}) to reconstruct electrical conductivity map. For phase-based EPT, the spatial variation of magnitude of transmit field (B_1^+) have to be negligible level. To guarantee this assumption, quadrature body coil (QBC) and/or single channel head transmit coil was recommended^{1,2}. In general, separate coils can be used for transmission and reception³. However, to use a different coil for reception such as breast imaging, the spatial variation of the magnitude of receive field (B_1^-) also have to be negligible. Here, we propose a coil combine method which minimizes the spatial variation of the combined B_1^- . A zero-order phase ($\varphi_{0,i}$) is selected for each i-th coil such that $\nabla B_1^-/B_1^-$ is minimized. The $\varphi_{0,i}$ was selected from a homogeneous phantom data and in-vivo breast conductivity imaging was performed.

Theory: Using the Helmholtz equation for complex transmit field (B_1^+) and receive field (B_1^-) , individual conductivity map, σ^+ and σ^- can be reconstructed identically as in Eq.1¹. The average value of σ^+ and σ^- can be decomposed as in Eq.2. When the term **a** and **b** are negligible, Eq.2 can be simplified using transceive phase (φ_{\pm}) as in Eq.3.

$$\sigma^{+} = \operatorname{Im}\left\{\nabla^{2} \boldsymbol{B}_{I}^{+} / \boldsymbol{B}_{I}^{+}\right\} / \mu_{0} \omega \quad \sigma^{-} = \operatorname{Im}\left\{\nabla^{2} \boldsymbol{B}_{I}^{-} / \boldsymbol{B}_{I}^{-}\right\} / \mu_{0} \omega \quad (1)$$

$$(\sigma^{+} + \sigma^{-}) / 2 = \operatorname{Im}\left\{\underbrace{2\nabla \boldsymbol{B}_{1}^{+} \cdot \nabla \boldsymbol{e}^{i\varphi_{+}} / \boldsymbol{B}_{I}^{+}}_{a} + \nabla^{2} \boldsymbol{e}^{i\varphi_{+}} / \boldsymbol{e}^{i\varphi_{+}} + \underbrace{2\nabla \boldsymbol{B}_{1}^{-} \cdot \nabla \boldsymbol{e}^{i\varphi_{-}} / \boldsymbol{B}_{I}^{-}}_{b} + \nabla^{2} \boldsymbol{e}^{i\varphi_{-}} / \boldsymbol{e}^{i\varphi_{-}}\right\} / 2\mu_{0} \omega \quad (2)$$

$$\approx \operatorname{Im}\left\{\nabla^{2} \boldsymbol{e}^{i\varphi_{+}} / \boldsymbol{e}^{i\varphi_{+}} + \nabla^{2} \boldsymbol{e}^{i\varphi_{-}} / \boldsymbol{e}^{i\varphi_{-}}\right\} / 2\mu_{0} \omega = \operatorname{Im}\left\{\nabla^{2} \boldsymbol{e}^{i\varphi_{+}} / \boldsymbol{e}^{i\varphi_{+}}\right\} / 2\mu_{0} \omega \quad (3)$$

To guarantee the result of phase-based EPT, the term b is minimized using a novel coil combine method. The term a is already known to be

negligible due to the usage of QBC for transmit^{1,2}. Directly acquiring B_1 is hard for conventional MRI. In this study, a homogeneous reference phantom was used to evaluate $\varphi_{0,i}$. For the phantom, the tissue signal can be regarded as constant so the spatial variation of signal magnitude (S) is only dependent on B_1^+ and B_1^- . Using this characteristic, the spatial variation of S can be decomposed as

$$\min_{D_0} \left\| \frac{\nabla S}{S} \right\|_2 \approx \operatorname{argmin}_{\varphi_0} \left\| \frac{\nabla f(B_1^+)}{f(B_1^+)} + \frac{\nabla B_1^-}{B_1^-} \right\|_2 = \operatorname{argmin}_{\varphi_0} \left\| \frac{\nabla B_1^-}{B_1^-} \right\|_2 (4)$$

Fig.1 (a) Magnitude image of phantom and conductivity map using transceive phase (φ_{\pm}) combined (b) $w/o \varphi_{0,i}$ correction and (c) $w/\varphi_{0,i}$ correction.

where $f(\cdot)$ is B_1^+ related function in MR signal. Therefore, we find $\varphi_{0,i}$ which minimizes the left side of (4) which corresponds to the $\varphi_{0,i}$ that minimizes the right side of (4). Note that the term related to B_1^+ in (4) is constant for varying $\varphi_{0,i}$.

Methods: As shown in Fig 1a, NaCl solutions with 2.0 (Left) and 1.1 (Right) S/m conductivity phantom were used. Using the determined $\varphi_{0,i}$ values from homogeneous phantom, in-vivo breast conductivity imaging was performed under the assumption that the $\varphi_{0,i}$ of phantom is similar to the $\varphi_{0,i}$ of human breast. Phantom and in-vivo imaging from a patient with known malignant breast cancer was performed in a 3T clinical scanner (MR750, GE Healthcare, Waukesha, WI) with a 8-channel breast coil using 2D T2-weighted fast spin echo (FSE) sequence (TR/TE_{eff}=4420/102ms, voxel size=0.81×1.3×3 mm³). A modified bilateral filter and mean filter was used for image quality improvement.

conductivity map (b) using φ_{\pm} combined with

<u>Results</u> & <u>Conclusion</u>: As shown in Fig 1b, conductivity reconstruction contained error due to non-negligible the spatial variation of B_1 when no phasing was used. However, by combining each coil data with $\varphi_{0,i}$, error in the conductivity map reduced (Fig 1c) and the average conductivity values closely corresponded to the

Phantom	Left	Right
Meas.	2.1 S/m	1.0 S/m
<i>w/o φ</i> _{0,i}	0.62 (±0.41)	0.23 (±0.28)
w/ φ _{0,i}	2.19 (±0.17)	0.98 (±0.12)
In-vivo	Fat	Tumor
<i>ref.</i> ⁴ at 100MHz	0.04(at 37°C)	1.4 (at 37°C)
w/ φ _{0,i}	0.14 (±0.50)	1.50 (±0.47)

arg

Table.1 The resulting conductivity value (mean \pm standard deviation) of phantom and in-vivo data

measurement value (Table 1). When the determined $\varphi_{0,i}$ was used on patient data, the resulting conductivity value of tumor was increased which closely corresponded to conductivity value from ref.[4]. In conclusion, a coil-combine process was developed which minimizes the spatial variation of B₁, and this approach was used to determine conductivity of malignant breast tumor.

determined $\varphi_{0,i}$

References: 1.Voigt et al, Quantitative conductivity and permittivity imaging of the human brain using electric properties tomography, MRM 66:456–466, 2011 2.Katscher et al, Determination of electric conductivity and local SAR via B1 mapping, IEEE TMI, 28:136-75, 2009 3.Voigt et al, Patient-individual local SAR determination: In vivo measurements and numerical validation, MRM 68:1117–1126, 2012 4.Surowiec et al, Dielectric Properties of Breast Carcinoma and the Surrounding Tissues,IEEE TBE 35: 257–263, 1988

Acknowledgements: NRF grant funded by the Korea government (MEST) (No. 2012-009903) Korea MKE and KIAT through the Workforce Development Program in Strategic Technology